Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T17:41:12.288Z Has data issue: false hasContentIssue false

Determination of 14C in Alcoholic Beverages

Published online by Cambridge University Press:  18 July 2016

Franz Schönhofer*
Affiliation:
Federal Institute for Food Control and Research Kinderspitalgasse 15, A-1090 Wien, Austria
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A simple and quick method for the determination of 14C in ethanol has been developed, using an ultra low-level liquid scintillation counter. I have studied factors influencing the lower limit of detection and have shown that liquor can be measured directly without pretreatment. Results of measurements on Austrian wines are presented and compared with results obtained from tritium measurements. The applicability and limitations of the results to age determination are discussed.

Type
III. Global 14C Variations
Copyright
Copyright © The American Journal of Science 

References

Awsiuk, R and Pazdur, M F, 1986, Regional Suess effect in the upper Silesia urban area, in Stuiver, M and Kra, R S, eds, Internatl 14C conf, 12th, Proc: Radiocarbon, v 28 no 2A, p 655660.Google Scholar
Fischer, E, Müller, H, Rapp, A and Steffan, H, 1980, Tritium- und Kohlenstoff-14–Gehalte von Weinen verschiedener Jahrgänge der nördlichen und südlichen Hemisphäre: Zeitschr Lebensm Forsch, v 171, p 269271.Google Scholar
Guérain, J and Tourlière, S, 1975, Radioactivité carbone et tritium des alcools: Industries alimentaires et agricoles, p 811822.Google Scholar
Kostadinov, K K and Yanev, Y L, 1986, Liquid scintillation measurement of C-14 in ethanol extracted from Bulgarian wines: Nuclear Instruments & Methods, v B17, p 511514.Google Scholar
Martin, G E, Noakes, J E, Alfonso, F C and Figert, D M, 1981, Liquid scintillation counting of C-14 for differentiation of synthetic ethanol from ethanol of fermentation: Jour Assoc Off Anal Chem, v 64, no. 5, p 11421144.Google Scholar
Povinec, P, Sivo, A, Chudy, M, Burchaladze, A A, Pagava, S V, Togonidze, G I and Eristavi, I V, 1986, Seasonal variations of anthropogenic radiocarbon in the atmosphere: Nuclear Instruments & Methods, v B17, p 556559.Google Scholar
Rank, D and Rajner, V, 1979, Tritium in der Umwelt, in Österreichisches Überwachungsnetz für Umweltradioaktivität, Tagung 1979: Austrian Fed Min Health & Environmental Protection, 1980, p 6773.Google Scholar
Resmini, P and Volonterio, G, 1974, Determinazione del livello naturale di C-14 nell'alcool etilico mediante scintillazione liquida: Ottimizzazione delle condizioni di conteggio: Riv Viticoltura Enol Conegliano, no. 10, p 313.Google Scholar
Schönhofer, F and Henrich, E, 1985, Trace analysis of radionuclides by liquid scintillation counting: Austrian Environmental Protection Agency, rept UBA-STS-85-02.Google Scholar
Schönhofer, F and Henrich, E, 1987, Recent progress and application of low-level liquid scintillation counting: Jour Radioanal Nuclear Chem, v 115, p 317333.Google Scholar
Schönhofer, F and Weisz, J, 1986, Tritium im Niederchlag, Übersichtsmessungen in Österreich 1986: Fed Inst Food Control & Research, Rept BALUF-RC-87-01.Google Scholar
Simon, H, Rauschenbach, P and Frey, A, 1968, Unterscheidung von Gärungsalkohol und Essig von synthetischem Material durch den C-14-Gehalt: Zeitschr Lebensm Forsch, v 136 p 279284.Google Scholar