Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-19T00:49:26.606Z Has data issue: false hasContentIssue false

Decadal Changes of Bomb Radiocarbon in the Subtropical South Pacific Ocean Between 1992 and 2003

Published online by Cambridge University Press:  18 July 2016

Yuichiro Kumamoto*
Affiliation:
Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
Akihiko Murata
Affiliation:
Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
Shuichi Watanabe
Affiliation:
Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
Masao Fukasawa
Affiliation:
Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka 237-0061, Japan
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A basin-scale repeat hydrography of the WOCE-P06 line along approximately 32°S has revealed decadal changes of bomb-produced radiocarbon in the subtropical South Pacific Ocean between 1992 and 2003. Surface δ14C decreased by about 30%. A δ14C decrease was also found in the upper thermocline from the surface to 400 m water depth. In the lower thermocline, from 400 m to 1100 m depth, however, δ14C increased, with a maximum increase of 25% at 700 m depth. This contrast between the upper and lower thermoclines resulted in an overall 10% increase of the specific column inventory of bomb 14C from 1992 to 2003. The global ocean inventory of bomb 14C was assessed based on the specific inventory increase in the subtropical South Pacific Ocean. The meridional distribution of bomb 14C in the early 1990s suggests that the bomb 14C increases observed along 32°S in 2003 were primarily caused by mixing along isopycnals.

Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Aramaki, T, Mizushima, T, Kuji, T, Povinec, PP, Togawa, O. 2001. Distribution of radiocarbon in the southwestern North Pacific. Radiocarbon 43(2B):857–67.Google Scholar
Broecker, WS, Peng, T-H. 1982. Tracers in the Sea. New York: Eldigio Press, Lamont-Doherty Geochemical Observatory of Columbia University. 690 p.Google Scholar
Broecker, WS, Peng, T-H. 1994. Stratospheric contribution to the global bomb radiocarbon inventory: model versus observation. Global Biogeochemical Cycles 8(3):377–84.Google Scholar
Broecker, WS, Peng, T-H, Engh, R. 1980. Modeling the carbon system. Radiocarbon 22(3):565–98.Google Scholar
Broecker, WS, Peng, T-H, Östlund, HG, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90(C4):6953–70.CrossRefGoogle Scholar
Broecker, WS, Sutherland, S, Smethie, W, Peng, T-H, Östlund, GH. 1995. Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochemical Cycles 9(2):263–88.Google Scholar
Conkright, ME, Locarnini, RA, Garcia, HE, O'Brien, TD, Boyer, TP, Stephens, C, Antonov, JI. 2002. World Ocean Atlas 2001: objective analyses, data statistics, and figures, CD-ROM documentation. Internal report 17. Silver Spring, Maryland, USA: National Oceanographic Data Center. 17 p. Available online at http://www.nodc.noaa.gov/OC5/WOA01/readme.pdf.Google Scholar
Guilderson, TP, Schrag, DP, Goddard, E, Kashgarian, M, Wellington, GM, Linsley, BK. 2000. Southwest subtropical Pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42(2):249–56.Google Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370(6486):201–3.Google Scholar
Jenkins, WJ. 1980. Tritium and 3He in the Sargasso Sea. Journal of Marine Research 38(3):533–69.Google Scholar
Key, RM, Quay, PD, Jones, GA, McNichol, AP, von Reden, KF, Schneider, RJ. 1996. WOCE AMS radiocarbon I: Pacific Ocean results (P6, P16 and P17). Radiocarbon 38(3):425518.Google Scholar
Key, RM, Quay, PD, Schlosser, P, McNichol, AP, von Reden, KF, Schneider, RJ, Elder, KL, Stuiver, M, Östlund, HG. 2002. WOCE radiocarbon IV: Pacific Ocean results; P10, P13N, PMC, P18, P19 & S4P. Radiocarbon 44(1):239392.Google Scholar
Key, RM, Kozyr, A, Sabine, CL, Lee, K, Wanninkhof, R, Bullister, JL, Feely, RA, Millero, FJ, Mordy, C, Peng, T-H. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18(4): GB4031, doi: 10.1029/2004GB002247.Google Scholar
Kumamoto, Y, Honda, MC, Murata, A, Harada, N, Kusakabe, M, Hayashi, K, Kisen, N, Katagiri, M, Nakao, K, Southon, JR. 2000. Distribution of radiocarbon in the western North Pacific: preliminary results from MR97-02 cruise in 1997. Nuclear Instruments and Methods in Physics Research B 172(1–4):495500.Google Scholar
Lassey, KR, Enting, IG, Trudinger, CM. 1996. The earth's radiocarbon budget, a consistent model of the global carbon and radiocarbon cycles. Tellus B 48:487501.Google Scholar
Ledwell, JR, Watson, AJ, Law, CS. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364(6439):701–3.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.Google Scholar
Naegler, T, Levin, I. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research 111: D12311, doi:10.1029/2005JD006758.Google Scholar
Naegler, T, Ciais, P, Rodgers, K, Levin, I. 2006. Excess radiocarbon constraints on air-sea gas exchange and the uptake of CO2 by the oceans. Geophysical Research Letters 33: L11802, doi:10.1029/2005GL025408.Google Scholar
Östlund, HG, Stuiver, M. 1980. GEOSECS Pacific radiocarbon. Radiocarbon 22(1):2553.Google Scholar
Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochemical Cycles 18: GB2202, doi:10.1029/2003GB002211.Google Scholar
Peng, T-H, Key, RM, Östlund, HG. 1998. Temporal variations of bomb radiocarbon inventory in the Pacific Ocean. Marine Chemistry 60(1–2):313.Google Scholar
Rubin, SI, Key, RM. 2002. Separating natural and bomb-produced radiocarbon in the ocean: the potential alkalinity method. Global Biogeochemical Cycles 16(4):1105, doi:10.1029/2001GB001432.Google Scholar
Schlitzer, R. 2006. Ocean data view [software]. URL: http://odv.awi.de.Google Scholar
Sonnerup, RE, Quay, PD, Bullister, JL. 1999. Thermocline ventilation and oxygen utilization rates in the subtropical North Pacific based on CFC distributions during WOCE. Deep-Sea Research I 46(5):777805.Google Scholar
Stuiver, M, Östlund, HG, Key, RM, Reimer, PJ. 1996. Large-volume WOCE radiocarbon sampling in the Pacific Ocean. Radiocarbon 38(3):519–61.Google Scholar
Sweeney, C, Gloor, E, Jacobson, AJ, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21: GB2015, doi:10.1029/2006GB002784.Google Scholar
Uchida, H, Fukasawa, M. 2005. WHP P6, A10, 13/14 Revisit Data Book, Blue Earth Global Expedition 2003 (BEAGLE2003). Volume 2. Yokosuka: JAMSTEC. 129 p.Google Scholar