Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-18T20:01:15.158Z Has data issue: false hasContentIssue false

Dating Organic Temper of Ceramics By Ams: Sample Preparation and Carbon Evaluation

Published online by Cambridge University Press:  18 July 2016

Denise C Gomes
Affiliation:
Museu de Arqueologia e Etnologia–USP, Avenida Prof. Almeida Prado, 1466, Cidade Universitária, São Paulo 05508–900, Brazil. Email: [email protected]
Oscar Vega
Affiliation:
Museu de Arqueologia e Etnologia–USP, Avenida Prof. Almeida Prado, 1466, Cidade Universitária, São Paulo 05508–900, Brazil. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a new methodology for separating organic temper from archaeological ceramics from Brazilian Amazonia. These experimental procedures were designed to directly date ceramic samples by accelerator mass spectrometry (AMS). An evaluation of the total carbon indicates the samples’ potential for dating.

Type
Notes and Comments
Copyright
Copyright © 1999 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bergquist, P. 1978. Sponges. Berkeley and Los Angeles: University of California Press. 268 p.Google Scholar
Evans, C, Meggers, B. 1962 Use of organic temper for carbon 14 dating in Lowland South America. American Antiquity 28(2):243–5.CrossRefGoogle Scholar
Evin, J, Gabasio, M, Lefevre, JC. 1989. Preparation techniques for radiocarbon dating of potsherds. Radiocarbon 31(3):276–83.Google Scholar
Gabasio, M, Evin, J, Arnal, GB, Andrieux, P. 1986. Origins of carbon in potsherds. Radiocarbon 28(2A):711–8.Google Scholar
Hedges, REM, Tiemei, C, Housley, RA. 1992. Results and methods in the radiocarbon dating of pottery. Radiocarbon 34(3): 906–15.Google Scholar
Johnson, JS, Clark, J, Miller-Antonio, S, Robins, D, Schiffer, MB, Skibo, JM. 1988. Effects of firing temperature on the fate of naturally occurring organic matter in clays. Journal of Archaeological Science 15: 403–14.CrossRefGoogle Scholar
Junk, WJ, Furch, K. 1985. The physical and chemical properties of Amazonian waters and their relationships with the Biota. In: Prance, GT, Lovejoy, TE, editors. Amazonia. London: Pergamon. p 317.Google Scholar
Linné, S. 1932. Contribution a 1'étude de la ceramique sudamericaine. Revista del Instituto de Etnologia 7:199232.Google Scholar
Rye, OS. 1981. Pottery Technology: Principles and Reconstruction. Washington (DC): Taraxacum. 150 p.Google Scholar
Shepard, AO. 1985 Ceramics for the Archaeologist. 12th ed. Washington (DC): Carnegie Institution of Washington. 414 p.Google Scholar
Tavares, MC, Volkmer-Ribeiro, C. 1997. Redescrição das esponjas de água doce Oncosclera navicella (Carter, 1881) (Potamolepidae) e Spongilla spoliata Volkmer-Ribeiro & Maciel, 1883 (Spongillidae). Biociências 5:97111.Google Scholar
Volkmer-Ribeiro, C, Costa, PR. 1992. On Metania spinata (Carter, 1881) and Metania kiliani n. sp.: Porifera, Metaniidae Volkmer-Ribeiro, 1986. Amazoniana 13(1):716.Google Scholar
Volkmer-Ribeiro, C, Tavares, MC. 1993. Sponges from the flooded sandy beaches of two Amazonian clear water rivers (Porifera). Iheringia, Series Zoologia (Porto Alegre) 75:187–8.Google Scholar