Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T02:02:04.420Z Has data issue: false hasContentIssue false

Cuello: Resolving the Chronology Through Direct Dating of Conserved and Low-Collagen Bone by AMS1

Published online by Cambridge University Press:  18 July 2016

I. A. Law
Affiliation:
Callanish Ltd., Breasclete, Isle of Lewis, UK
R. A. Housley
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, 6, Keble Road, Oxford OX1 3QJ UK
Norman Hammond
Affiliation:
Department of Archaeology, Boston University, 675 Commonwealth Avenue, Boston, Massachusetts 02215 USA
R. E. M. Hedges
Affiliation:
Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, 6, Keble Road, Oxford OX1 3QJ UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is well known that 14C dating of fossil bone with seriously depleted protein levels, or bone that has been consolidated with preservatives, can produce erroneous results. In the tropics, warm and moist soil conditions lead to constant reworking of organic matter and add to the danger of bone contamination. Because of this, 14C dating of preservative-impregnated bone from such areas has rarely been successful. We report here a set of AMS dates on both unconsolidated animal bone and polyvinyl acetate/polyvinyl alcohol (PVA/PV-OH) impregnated human burials from the Maya site of Cuello, Belize. The steps needed to purify the samples are described, together with details on the use of qualitative infra-red (IR) spectra as a means of assessing sample purity.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Ajie, H. O., Kaplan, I. R., Slota, P. J. Jr. and Taylor, R. E. 1990 AMS radiocarbon dating of bone osteocalcin. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International AMS Conference. Nuclear Instruments and Methods B52: 433437.CrossRefGoogle Scholar
Andrews, V. E. W. 1991 The early ceramic history of the Lowland Maya. In Harrison, P. D. and Clancy, F., eds., Vision and Revision in Maya Studies. Albuquerque, University of New Mexico Press: 119.Google Scholar
Andrews, V. E. W. and Hammond, N. 1990 Redefinition of the Swasey phase at Cuello, Belize. American Antiquity 55(3): 570584.CrossRefGoogle Scholar
Bradbury, E. M., Burge, R. E., Randall, J. T. and Wilkinson, G. R. 1958 The polypeptide chain configurations of native and denatured collagen fibres. Discussions of the Faraday Society 25: 173185.CrossRefGoogle Scholar
Coe, M. D. 1980 The Maya, 3rd edition. London, Thames and Hudson.Google Scholar
Donaghey, S., Pring, D., Wilk, R., Saul, F. P., Feldman, L. H. and Hammond, N. 1976 Excavations at Cuello, 1976. In Hammond, N., ed., Archaeology in Northern Belize. Corozal Project 1976 Interim Report. Centre for Latin American Studies, Cambridge University: 659.Google Scholar
Gillespie, R., Hedges, R. E. M. and Humm, M. J. 1986 Routine AMS dating of bone and shell proteins. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 451456.CrossRefGoogle Scholar
Gowlett, J. A. J., Hall, E. T., Hedges, R. E. M. and Perry, C. 1986 Radiocarbon dates from the Oxford AMS system: Datelist 3. Archaeometry 28(1): 116125.CrossRefGoogle Scholar
Hammond, N. 1980 Early Maya ceremonial at Cuello, Belize. Antiquity 54: 176190.CrossRefGoogle Scholar
Hammond, N. 1984 Two roads diverged: A brief comment on “Lowland Maya archaeology at the crossroads.” American Antiquity 49(4): 821826.CrossRefGoogle Scholar
Hammond, N., Donaghey, S., Berger, R., de Atley, S., Switsur, V. R. and Ward, A. P. 1977 Maya Formative phase radiocarbon dates from Belize. Nature 267: 608610.CrossRefGoogle Scholar
Hammond, N., Housley, R. A. and Law, I. A. 1991 The Postclassic at Cuello, Belize. Ancient Mesoamerica 2(1): 7174.CrossRefGoogle Scholar
Hammond, N., Pring, D., Berger, R., Switsur, V. R. and Ward, A. P. 1976 Radiocarbon chronology for early Maya occupation at Cuello, Belize. Nature 260: 579581.CrossRefGoogle Scholar
Hammond, N., Pring, D., Wilk, R., Donaghey, S., Saul, F. P., Wing, E. S., Miller, A. V. and Feldman, L. H. 1979 The earliest Lowland Maya? Definition of the Swasey phase. American Antiquity 44 (1): 92110.CrossRefGoogle Scholar
Haslam, J., Willis, H. A. and Squirrel, D. C. M. 1972 Identification and Analysis of Plastics, 2nd edition. London.Google Scholar
Hedges, R. E. M. and Law, I. A. 1989 The radiocarbon dating of bone. Applied Geochemistry 4: 249253.CrossRefGoogle Scholar
Hedges, R. E. M., Law, I. A., Bronk, C. R. and Housley, R. A. 1989 The Oxford accelerator mass spectrometry facility: Technical developments in routine dating. Archaeometry 31(2): 99114.CrossRefGoogle Scholar
Horie, C. V. 1987 Materials for Conservation. London, Butterworth: 281 p.Google Scholar
Klinken, van, G. J. and Mook, W. G. 1990 Preparative high-performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32(2): 155164.CrossRefGoogle Scholar
Law, I. A. and Hedges, R. E. M. 1989 A semi-automated bone pretreatment system and the pretreatment of older and contaminated samples. In Long, A. and Kra, R. S., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 247253.CrossRefGoogle Scholar
Linick, T. W. 1984 La Jolla natural radiocarbon measurements X. Radiocarbon 26(1): 75110.CrossRefGoogle Scholar
Lowe, G. W. 1978 Eastern Mesoamerica. In Taylor, R. E. and Meighan, C. W., eds., Chronologies in New World Archaeology. New York, Academic Press: 331393.Google Scholar
Marcus, J. 1983 Lowland Maya archaeology at the crossroads. American Antiquity 48: 454488.CrossRefGoogle Scholar
Marcus, J. 1984 Reply to Hammond and Andrews. American Antiquity 49(4): 829833.CrossRefGoogle Scholar
Pearson, G. W., Pilcher, J. R., Baillie, M. G. L., Corbett, D. M. and Qua, F. 1986 High-precision 14C measurement of Irish oaks to show the natural 14C variations from a.d. 1840 to 5210 b.c. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 911934.CrossRefGoogle Scholar
Pearson, G. W. and Stuiver, M. 1986 High-precision calibration of the radiocarbon time scale, 500–2500 b.c. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 839862.CrossRefGoogle Scholar
Plicht, van der J. and Mook, W. G. 1989 Calibration of radiocarbon ages by computer. In Long, A. and Kra, R. S., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 805816.CrossRefGoogle Scholar
Pring, D. and Hammond, N. 1982 The stratigraphic priority of Swasey ceramics at Cuello, Belize. Ceramica de Cultura Maya et al. 12: 4348.Google Scholar
Smith, R. E. 1955 Ceramic sequence at Uaxactum, Guatemala. Middle American Research Institute Publication 20 (2 vols.), Tulane University.Google Scholar
Stafford, T. W. Jr., Hare, P. E., Currie, L., Jull, A. J. T. and Donahue, D. J. 1991 Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18(1): 3572.CrossRefGoogle Scholar
Stuiver, M. and Pearson, G. W. 1986 High-precision calibration of the radiocarbon time scale, a.d. 1950–500 b.c. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2B): 805838.CrossRefGoogle Scholar
Timasheff, S. N. and Susi, H. 1966 Infrared investigations of the secondary structure of β-Lactoglobulins. Journal of Biological Chemistry 241: 249251.CrossRefGoogle ScholarPubMed