Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T08:45:59.812Z Has data issue: false hasContentIssue false

Cosmogenic Nuclides in Ice Sheets

Published online by Cambridge University Press:  18 July 2016

Devendra Lal
Affiliation:
Scripps Institution of Oceanography, Geological Research Division, La Jolla, California 92093-0220 USA
A. J. T. Jull
Affiliation:
NSF-Arizona Accelerator Facility for Radioisotope Analysis, The University of Arizona, Tucson Arizona 85721 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the nature of the twofold record of cosmogenic nuclides in ice sheets, of nuclei produced in the atmosphere, and of nuclei produced in situ due to interactions of cosmic-ray particles with oxygen nuclei in ice. We show that a wealth of geophysical information, in principle, can be derived from a suitable combination of nuclides in ice deposited at different latitudes. Such knowledge includes temporal changes in the cosmic-ray flux, in the geomagnetic field and in climate. The rate of deposition of cosmogenic atmospheric nuclei in ice depends on the global cosmic-ray flux and a host of climatic factors. The global cosmic-ray flux, in turn, depends on the level of solar activity, and of the geomagnetic dipole field. Thus, the task of deconvolution of the record of cosmogenic nuclides is difficult, but can be facilitated by considering the recently discovered record of in-situ-produced cosmogenic 14C, whose production rate at high latitudes is independent of the geomagnetic dipole field (Lal 1992b). We also present a brief review of work done to date and new prospects for deciphering geophysical records using ice sheets.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Aegerter, S., Oeschger, H., Renaud, A. and Schumacher, E. 1969 Studies based on the tritium content of the samples. In Renaud, A., ed., Etudes Physiques et Chimiques sur la Glace de l'Indlandis du Groenland 1959 EGIG 1957–1960 5(3). Copenhagen, Bianco Lunos Bogtrykker A/S: 7688.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405410.Google Scholar
Beer, J., Andrée, M., Oeschger, H., Siegenthaler, U., Bonani, G., Hofmann, H., Morenzoni, E., Nesi, M., Suter, M., Wölfli, W., Finkel, R. and Langway, C. C. Jr. 1984 The Camp Century 10Be record: Implications for long-term variations of the geomagnetic dipole moment. In Wölfli, W., Polach, H. A. and Anderson, H. H., eds., Proceedings of the 3rd International Symposium on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B5: 380384.Google Scholar
Beer, J., Andrée, M., Oeschger, H., Stauffer, B., Balzer, R., Bonani, G., Stoller, M., Suter, M., Wölfli, W. and Finkel, R. C. 1983 Temporal 10Be variations in ice. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25 (2): 269278.CrossRefGoogle Scholar
Beer, J., Blinov, A., Bonani, G., Finkel, R. C., Hofmann, H. J., Lehmann, B., Oeschger, H., Sigg, A., Schwander, J., Staffenbach, T., Stauffer, B., Suter, M. and Wölfli, W. 1990 Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347: 164166.CrossRefGoogle Scholar
Beer, J., Siegenthaler, U., Bonani, G., Finkel, R. C., Oeschger, H., Suter, M. and Wölfli, W. 1988 Information on past solar activity and geomagnetism from 10Be in the Camp Century ice core. Nature 331: 675679.CrossRefGoogle Scholar
Castagnoli, G. and Lal, D. 1980 Solar modulation effects in terrestrial production of carbon-14. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 133158.Google Scholar
Coachman, L. K., Enns, T. and Scholander, P. F. 1958 Gas loss from a temperate glacier. Tellus 10: 493495.Google Scholar
Craig, H., Cerling, T. E., Willis, R. D., Davis, W. A., Joyner, C. and Thonnard, N. 1990 Krypton 81 in Antarctic Ice: First measurement of a Krypton age on ancient ice. EOS 71: 1825.Google Scholar
Damon, P. E. and Sonett, C. P. 1991 Solar and terrestrial components of the atmospheric 14C variation spectrum. In Sonett, C. P., Giampapa, N. S. and Matthews, M. S., eds., The Sun in Time . Tucson, The University of Arizona Press: 360388.Google Scholar
Elmore, D., Conrad, N. J., Kubik, P. W. and Gove, H. E. 1987 36Cl and 10Be profiles in Greenland ice: dating and production rate variations. In Gove, H. E., Litherland, A. E. and Elmore, D., eds., Proceedings of the 4th International Symposium on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B29: 207210.CrossRefGoogle Scholar
Fireman, E. L. and Norris, T. 1981 Carbon-14 ages of Allan Hills meteorites and ice. Proceedings of the Lunar and Planetary Science Conference 12: 10191025.Google Scholar
Garcia-Munoz, M., Mason, M. and Simpson, J. 1977 New aspects of the cosmic-ray modulation in 1974–1975 near-solar minimum. Astrophysical Journal 231: 263268.Google Scholar
Kocharov, G. E. 1990 Investigation of astrophysical and geophysical problems by AMS: Successes achieved and prospects. In Yiou, F. and Raisbeck, G. M., eds., Proceedings of the 5th International Conference on Accelerator Mass Spectrometry. Nuclear Instruments and Methods B52: 583587.Google Scholar
Kocharov, G. E. and Konstantinov, A. N. 1983 Cosmogenic nuclide 10Be abundance in the ice cores and the time variation of cosmic rays. In Conference Papers , 18th International Cosmic Ray Conference, Bangalore, India. OG 2, OG 7-1: 333336.Google Scholar
Lal, D. 1985 Carbon cycle variations during the past 50,000 years: Atmospheric 14C/12C ratio as an isotopic indicator. In Sundquist, E. T. and Broecker, W. S., eds., American Geophysical Union Monograph 32: 221233.Google Scholar
Lal, D. 1987 10Be in polar ice: Data reflect changes in cosmic ray flux or polar meteorology? Geophysical Research Letters. 14(8): 785788.Google Scholar
Lal, D. 1988 Theoretically expected variations in the terrestrial cosmic-ray productions rates of isotopes. In Castagnoli, G. C., ed., Solar Terrestrial Relationships and the Earth Environment in the Last Millennia . Amsterdam, North Holland: 216233.Google Scholar
Lal, D. 1992a Expected secular variations in the global terrestrial production rate of radiocarbon. In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies . NATO ASI Series I-2. Berlin Heidelberg, Springer-Verlag: 113126.CrossRefGoogle Scholar
Lal, D. 1992b Cosmogenic in situ radiocarbon on the Earth. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective . New York, Springer-Verlag: 146162.CrossRefGoogle Scholar
Lal, D. and Jull, A. J. T. 1990 On determining ice accumulation rates in the past 40,000 years using in situ cosmogenic 14C. Geophysical Research Letters 17(9): 13031306.CrossRefGoogle Scholar
Lal, D., Jull, A. J. T., Donahue, D. J., Burtner, D. and Nishiizumi, K. 1990 Polar ice ablation rates measured in situ cosmogenic 14C. Nature 346: 350352.Google Scholar
Lal, D. and Lingenfelter, R. E. 1991 History of the sun during the past 4.5 Gyr as revealed by studies of energetic solar particles recorded in extraterrestrial and terrestrial samples. In Sonett, C. P., Giampapa, M. S. and Matthews, M. S., eds., The Sun in Time . Tucson, The University of Arizona Press: 221231.Google Scholar
Lal, D., Nishiizumi, K. and Arnold, J. R. 1987 In situ cosmogenic 3H, 14C and 10Be for determining the net accumulation and ablation rates of ice sheets. Journal of Geophysical Research 92: 49474952.Google Scholar
Lal, D. and Peters, B. 1967 Cosmic-ray produced radioactivity on the Earth. In Sitte, K., ed., Encyclopedia of Physics 46/2. Amsterdam, North Holland: 551612.Google Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1991 Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18: 18851888.Google Scholar
Nijampurkar, N., Bhandari, N. and Puri, V. M. K. 1984 Ice dynamics and accumulation rates on Changme-Khangpu glacier, Sikkim. In Isotope Hydrology 1983 . Vienna, IAEA: 3141.Google Scholar
Oeschger, H. 1985 The contribution of ice core studies to the understanding of environmental processes. In Langway, C. C. Jr., Oeschger, H. and Dansgaard, W., eds., Greenland Ice Core: Geophysics, Geochemistry and the Environment. American Geophysical Union Monograph 33: 917.Google Scholar
Raisbeck, G. M. and Yiou, F. 1988 10Be as a proxy indicator of variations in solar activity and geomagnetic field intensity during the last 10,000 years. In Stephenson, F. R. and Wolfendale, A. W., eds., Secular Solar and Geomagnetic Variations in the Last 10,000 Years . Dordrecht, The Netherlands, Kluwer Academic Publishers: 287296.CrossRefGoogle Scholar
Raisbeck, G. M., Yiou, F., Fruneau, M., Loiseaux, J. M., Lieuvin, M., Ravel, J. C. and Lorius, C. 1981 Cosmogenic 10Be concentrations in Antarctic ice during the past 30,000 years. Nature 292: 825826.Google Scholar
Raisbeck, G. M., Yiou, F., Jouzel, J. and Petit, J. R. 1990 10Be and δ2H in polar ice cores as a probe of the solar variability's influence on climate. Philosophical Transactions of the Royal Society of London A330: 463470.Google Scholar
Raisbeck, G. M., Yiou, F., Jouzel, J., Petit, J. R., Barkov, N. I. and Bard, E. 1992 10Be deposition at Vostok, Antarctica during the last 50,000 years and its relationship to possible cosmogenic production variations during this period. In Bard, E. and Broecker, W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies . NATO ASI Series I-2. Berlin Heidelberg, Springer-Verlag: 127139.Google Scholar
Sonett, C. P., Morfill, G. E. and Jokipii, J. R. 1987 Interstellar shock waves and 10Be from ice cores. Nature 330: 458460.Google Scholar
Stauffer, B. R. 1989 Dating of ice by radioactive isotopes. In Oeschger, H. and Langway, C.C. Jr., eds., The Environment Record in Glaciers and Ice Sheets . New York, John Wiley & Sons: 123140.Google Scholar
Stuiver, M., Braziunas, T. F., Becker, B. and Kromer, B. 1991 Climatic, solar, oceanic and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C/12C change. Quaternary Research 35: 124.Google Scholar
Suess, H. E. 1970 Bristlecone-pine calibration of the radiocarbon time-scale 5200 BC to the present. In Olsson, I. U., ed., Radiocarbon Variations and Absolute Chronology . Proceedings of the 12th Nobel Symposium. New York, John Wiley & Sons: 595612.Google Scholar