Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T06:39:13.736Z Has data issue: false hasContentIssue false

Cosmogenic Isotope Paleogeophysics - Paleoastrophysics and Natural Variation of Cosmogenic Isotopes

Published online by Cambridge University Press:  18 July 2016

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Preface
Copyright
Copyright © The American Journal of Science 

References

Cowan, C., Atluri, C. R. and Libby, W. F. 1965 Possible anti-matter content of the tunguska meteor of 1908. Nature 206: 861865.Google Scholar
Damon, P. E. 1987 The history of the calibration of radiocarbon dates by dendrochronology. In Aurenche, O., Evin, J. and Hourst, F., eds., Relative Chronologies and Absolute Chronology 16,000-4,000 BP. BAR International Series 379: 61104.Google Scholar
Damon, P. E., Lerman, J. C., Long, A., Bannister, B., Klein, J. and Linick, T. W. 1980 Report on the workshop on calibration of the radiocarbon time scale, In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 947949.Google Scholar
Damon, P. E., Long, A. and Sigalove, J. J. 1963 Arizona radiocarbon dates IV. Radiocarbon 5: 283-301.Google Scholar
de Vries, H. 1958 Variation in concentration of radiocarbon with time and location on earth. Koninklijke Nederlandse Akademie van Wetenschappen. Proceedings Series B 61: 94102.Google Scholar
Godwin, H. 1962a Radiocarbon dating. Nature 195:984.Google Scholar
Godwin, H. 1962b Half-life of radiocarbon. Nature 195: 984.Google Scholar
Konstantinov, B. P. and Kocharov, G. E. 1965 Astrophysical phenomena and radiocarbon. Doklady Akademii Nauk SSSR 165: 63-64.Google Scholar
Libby, W. F. 1955 Radiocarbon Dating. Second Edition. Chicago, University of Chicago Press: 175 p.Google Scholar
Lingenfelter, R. E. and Ramaty, R. 1970 Astrophysical and geophysical variations in 14C production. In Olsson, I., ed., Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium. New York, John Wiley & Sons: 513537.Google Scholar
Nesme-Ribes, E. and Mangeney, A. 1992 On a plausible physical mechanism linking the Maunder Minimum to the Little Ice Age. Radiocarbon, this issue.CrossRefGoogle Scholar
Olsson, I., ed. 1970 Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium. New York, John Wiley & Sons: 652 p.Google Scholar
Pavlov, A. K., Kogan, V. T. and Gladkov, G. Y. 1992 A tandem mass-spectrometric method of cosmogenic isotope analysis. Radiocarbon, this issue.Google Scholar
Ralph, E. K. and Stuckenrath, R. 1960 Carbon-14 measurements of known age samples. Nature 188: 185-187.Google Scholar
Stuiver, M. 1961 Variations in radiocarbon concentration and sunspot activity. Journal of Geophysical Research 66: 273-276.Google Scholar
Stuiver, M. 1965 Carbon-14 content of 18th-and 19th-century wood, variations correlated with sunspot activity. Science 149: 533-535.Google Scholar
Stuiver, M. and Kra, R. S., eds. 1986 Calibration Issue. Proceedings of the 12th International Radiocarbon conference. Radiocarbon 28(2B): 1030 p.Google Scholar
Stuiver, M., Long, A. and Kra, R. S., eds. 1993 Calibration Issue 1993. Radiocarbon 35(1), in press.Google Scholar
Suess, H. E. 1955 Radiocarbon concentration in modern wood. Science 122: 415-417.Google Scholar
Suess, H. E. 1961 Secular variations in the concentration of atmospheric radiocarbon. In Proceedings of a Conference on Problems Related to Interplanetary Matter. NAS-NRC Publication 845: 9095.Google Scholar
Willis, E. H., Tauber, H. and Munnich, K. O. 1960 Variations in the atmospheric radiocarbon concentration over the past 1300 years. Radiocarbon 3: 14.Google Scholar