Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T12:25:01.106Z Has data issue: false hasContentIssue false

A Correction for In-Situ14C in Antarctic Ice with 14CO

Published online by Cambridge University Press:  18 July 2016

Job Van Rouen
Affiliation:
Department of Subatomic Physics, Universiteit Utrecht, P.O. Box 80,000, NL-3508 TA Utrecht The Netherlands
Klaas Van Der Borg
Affiliation:
Department of Subatomic Physics, Universiteit Utrecht, P.O. Box 80,000, NL-3508 TA Utrecht The Netherlands
Arie De Jong
Affiliation:
Department of Subatomic Physics, Universiteit Utrecht, P.O. Box 80,000, NL-3508 TA Utrecht The Netherlands
Johannes Oerlemans
Affiliation:
Institute for Marine and Atmospheric Research Utrecht, Universiteit Utrecht, P.O. Box 80,000 NL-3508 TA Utrecht, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use a dry extraction method to obtain trapped CO2 of shallow ice cores from a blue ice area of East Antarctica. In-situ-produced 14C extracted in 14CO2 and 14CO concentrations show a mean ratio of 3.4 ± 0.4. Correction for in-situ14CO2 resulted in ice ages within 7–13 ka. The accumulation and ablation rates determined from the in-situ production of 7–20 cm yr−1 and 10–13 cm yr−1, respectively, agree with field measurements, and thus indicate close to total efficiency of extraction.

Type
I. 14C in the Reconstruction of Past Environments
Copyright
Copyright © the Department of Geosciences, The University of Arizona 

References

Jonsson, S. 1990 Local climate and mass balance of a blue-ice area in Western Dronning Maud land, Antarctica. Zeitschrift für Gletscherkunde und Glacialgeologie 26(1): 1129.Google Scholar
Jull, A. J. T., Lal, D., Donahue, D. J., Mayewski, P., Lorius, C. Raynaud, D. and Petit, J. R. 1994 Measurements of cosmic-ray produced 14C in firn and ice from Antarctica. Nuclear Instruments and Methods in Physics Research B 92: 326330.Google Scholar
Lal, D. and Jull, A. J. T. 1990 On determining ice accumulation rates in the past 40,000 years using in-situ cosmogenic 14C. Geophysical Research Letters 17(9): 13031306.Google Scholar
Lal, D., Jull, A. J. T., Donahue, D. J., Burtner, D. and Nishiizumi, K. 1990 Polar ice ablation rates measured using in-situ cosmogenic 14C. Nature 346: 350352.Google Scholar
Näslund, J. 1992 Blue-ice investigations in the Scharf-fenbergbotnen basin. In Melander, O. and Carlsson, M. L., eds., Swedish Antarctic Research Programme 1991/92. Stockholm, Swedish Polar Research Secretariat: 4853.Google Scholar
Roessler, K. 1988 Hot atom chemistry in space-simulation with nuclear methods. Radiochimica Acta 43: 123125.Google Scholar
Stauffer, B. and Oeschger, H. 1985 Enclosure of air during metamorphosis of dry firn to ice. Annals of Glaciology 6: 108112.Google Scholar
van der Borg, K., Alderliesten, C., Houston, C. M., de Jong, A. F. M. and van Zwol, N. A. 1987 Accelerator mass spectrometry with 14C and 10Be in Utrecht. Nuclear Instruments and Methods in Physics Research B 29: 143145.Google Scholar
van Roijen, J. J., Bintanja, R., van der Borg, K., van den Broeke, M. R., de Jong, A. F. M. and Oerlemans, J. 1994 Dry extraction of 14CO2 and 14CO from Antarctic ice. Nuclear Instruments and Methods in Physics Research B 92: 331334.Google Scholar
van Roijen, J. J., van der Borg, K., de Jong, A. F. M. and Oerlemans, J. 1995 Ages, ablation and accumulation rates from 14C measurements on Antarctic ice. Annals of Glaciology 2: 139143.Google Scholar