Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-19T00:17:01.821Z Has data issue: false hasContentIssue false

Commissioning of a Quantulus 1220 Liquid Scintillation Beta Spectrometer for Measuring 14C and 3H at Natural Abundance Levels

Published online by Cambridge University Press:  18 July 2016

Jacek Pawlyta
Affiliation:
Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Anna Pazdur
Affiliation:
Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Andrzej Z. Rakowski
Affiliation:
Institute of Physics, Silesian Technical University, Krzywoustego 2, PL-44-100 Gliwice, Poland
Brian F. Miller
Affiliation:
NERC Radiocarbon Laboratory, NEL Technology Park, East Kilbride, Glasgow G75 0QU, Scotland
Douglas D. Harkness
Affiliation:
NERC Radiocarbon Laboratory, NEL Technology Park, East Kilbride, Glasgow G75 0QU, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1994, the Gliwice Radiocarbon Laboratory began operating a liquid scintillation spectrometry system, consisting of a Quantulus 1220 spectrometer and two vacuum rigs for benzene production. This paper describes the procedures used for the benzene synthesis from samples containing < 1 g of carbon and in the range 1 to 10 g of carbon. We also present the Quantulus calibration procedures used in the Gliwice Radiocarbon Laboratory and NERC Radiocarbon Laboratory, and compare the calibration parameters.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Gupta, S. K. and Polach, H. A. 1985 Radiocarbon Dating Practices at ANU. Canberra, Radiocarbon Laboratory, Research School of Pacific Studies, ANU: 173 p.Google Scholar
Kojola, H., Polach, H., Nurmi, J., Oikari, T. and Soini, E. 1984 High resolution low level liquid scintillation beta-spectrometer. International Journal of Applied Radiation and Isotopes 35(10): 949952.CrossRefGoogle Scholar
Kojola, H., Polach, H., Nurmi, J., Heinonen, H., Oikari, T. and Soini, E 1985 Low level liquid scintillation spectrometer for beta-counting. In The Third Nordic Conference on the Application of Scientific Methods in Archaeology, Mariehamn, Finland, 8–11 October 1994. Iskos 5: 539542.Google Scholar
McCormac, F. G. 1992 Benzene purity correction in high-precision radiocarbon dating. Radiocarbon 34(1): 3746.Google Scholar
Mestres, J. S., Garcia, J. F. and Rauret, G. 1991 The Radiocarbon Laboratory at the University of Barcelona. Radiocarbon 33(1): 2335.CrossRefGoogle Scholar
Polach, H. 1992 Four decades of LS counting and spectrometry. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 198213.CrossRefGoogle Scholar
Polach, H., Kojola, H., Nurmi, J. and Soini, E. 1984 Multiparameter liquid scintillation spectrometry. Nuclear Instruments and Methods in Physics Research B5: 439442.Google Scholar
Rank, D. 1992 Environmental tritium in hydrology: Present state (1992). In Noakes, J. E., Schönhofer, F. and Polach, H. A, eds., Liquid Scintillation Spectrometry 1992. Tucson, Radiocarbon: 327334.Google Scholar
Skripkin, V. and Buzinny, M. 1995 Newly designed 0.8 ml Teflon vial for microvolume radiocarbon dating. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 743747.Google Scholar