Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T09:53:44.276Z Has data issue: false hasContentIssue false

Chronology of the Atmospheric Mercury in Lagoa da Pata Basin, Upper Rio Negro Region of Brazilian Amazon

Published online by Cambridge University Press:  18 July 2016

G M Santos*
Affiliation:
Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, A.C.T. 0200, Australia
R C Cordeiro
Affiliation:
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, R.J., 24020-007, Brazil
E V Silva Filho
Affiliation:
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, R.J., 24020-007, Brazil
B Turcq
Affiliation:
Institute de Recherche pour L'Development, Bondy, France
L D Lacerda
Affiliation:
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, R.J., 24020-007, Brazil
L K Fifield
Affiliation:
Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, A.C.T. 0200, Australia
P R S Gomes
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Niterói, R.J., 24210-340, Brazil
P A Hausladen
Affiliation:
Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, A.C.T. 0200, Australia
A Sifeddine
Affiliation:
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, R.J., 24020-007, Brazil Institute de Recherche pour L'Development, Bondy, France
A L S Albuquerque
Affiliation:
Departamento de Geoquímica, Universidade Federal Fluminense, Niterói, R.J., 24020-007, Brazil
*
Corresponding author: Guaciara Macêdo dos Santos, Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian National University, A.C.T. 0200, Australia. E-mail: [email protected]. Supported by a fellowship from CNPq, Brazil.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present prehistoric mercury accumulation rates in a dated sediment core from Lagoa da Pata, a remote lake in São Gabriel da Cachoeira, northern Amazon. The sediment samples were subdivided for mercury and radiocarbon analyses. A group of 18 samples have been prepared at ANU for 14C dating by accelerator mass spectrometry (AMS). The dating results show a good correlation with depth in the core, down to 41,500 BP. Three distinct sections are clearly identified in the core. They consist of upper and lower organic-rich layers, separated by an inorganic layer which represents a short period of rapid accumulation around 18 ka BP. The mercury accumulation rate is found to be larger in the upper layer (18 ka to present) than in the lower one (41 ka to 25 ka), by a factor of three. The larger accumulation rate of mercury is probably associated with warmer temperatures and a higher frequency of forest fires during the Holocene.

Type
II. Our ‘Wet’ Environment
Copyright
Copyright © 2001 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Colinvaux, PA, de Oliveira, PE, Moreno, JE, Miller, MC, Bush, MB. 1996a. A long pollen record from lowland Amazonia: forest and cooling in glacial times. Science 274:85–8.CrossRefGoogle Scholar
Colinvaux, PA, Liu, KB, de Oliveira, PE, Bush, MB, Miller, MC, Kannan, MS. 1996b. Temperature depression in the lowland tropics in glacial times. Climatic Change 32:1933.Google Scholar
Cordeiro, RC. 1995. Mudanças paleoambientais e ocorrência de incêndios nos últimos 7400 anos, na região de Carajás, Pará. Master Degree Thesis. Universidade Federal Fluminense. Niteroi, Brazil. 144 p.Google Scholar
Cordeiro, RC, Turcq, B, Oliveira da Silva, A, Suguio, K. 1997. Holocene environmental changes in Carajás region (Pará, Brazil) recorded by lacustrine deposits. Verh. Internat. Verein. Limnol. 26: 814–7.Google Scholar
Engstrom, DR, Swain, EB. 1997. Recent declines in atmospheric mercury deposition in the upper Midwest. Environmental Science & Technology 31:960–7.CrossRefGoogle Scholar
Gomes, CB, Ruberti, E, Morbidelli, L. 1990. Journal of South American Earth Sciences 3(51).Google Scholar
Justo, LC, Souza, MM. 1984. Jazida de Nióbio do Morro dos Seis Lagos, Amazonas. Capítulo XXXVII. Principais Depósitos Minerais do Brasil. Volume 2. Rio de Janeiro: Departamento Nacional da Produção Mineral.Google Scholar
Lacerda, LD. 1995. Amazon mercury emissions. Nature 374:20–1.Google Scholar
Lacerda, LD. 1997. Evolution of mercury contamination in Brazil. Water, Air and Soil Pollution 97: 247–55.Google Scholar
Lacerda, LD, Salomons, W. 1998. Mercury from gold and silver mining: a chemical time-bomb? Berlin: Springer Verlag. 146 p.Google Scholar
Lacerda, LD, Ribeiro, MG, Cordeiro, RC, Sifeddine, A, Turcq, B. 1999. Atmospheric mercury deposition over Brazil during the past 30,000 years. Ciência e Cultura, Journal of the Brazilian Society for the Advancement of Sciences 51(5/6):363–71Google Scholar
Ledru, MP, Bertaux, J, Sifeddine, A, Suguio, K. 1998. Absence of Last Glacial Maximum records in lowland tropical forests. Quaternary Research 49:233–7Google Scholar
Marínez-Cortizas, A, Pontevedra-Pombal, X, Garcia-Rodeja, E, Nóvoa-Muñoz, JC, Shotyk, W. 1999. Mercury in Spanish peat bog: archive of climate change and atmospheric metal deposition. Science 284:939–42.Google Scholar
Nriagu, JO. 1996. A history of global metal pollution. Science 272:223–4.CrossRefGoogle Scholar
Pessenda, LCR, Gomes, BM, Aravena, R, Ribeiro, AS, Boulet, R, Gouveia, SEM. 1998a. The carbon isotope record in soils along a forest-cerrado ecosystem transect: implications for vegetation changes in the Rondônia State, southwestern Brazilian Amazon region. The Holocene 8(5):599603.CrossRefGoogle Scholar
Pessenda, LCR, Valencia, EPE, Aravena, R, Telles, ECC, Boulet, R. 1998b. Paleoclimate studies in Brazil using carbon isotope studies in soils. In: Wasserman, JC, Silva Filho, EV, Villas-Boas, R, editors. Environmental Geochemistry in the Tropics. Springer Verlag.Google Scholar
Pirrone, N, Allegrini, I, Keeler, GJ, Nriagu, JO, Rossman, R, Robbins, JA. 1998. Historical atmospheric emissions and depositions in North america compared to mercury accumulations in sedimentary records. Atmospheric Environment 32(5):929–40.Google Scholar
Porcella, D. 1996. Protocol for estimating historic atmospheric mercury deposition: Technical Report – TR −106768. Electric Power Research Institute, Palo Alto, California.Google Scholar
Santos, GM. 1999a. Implementação e Aplicação de AMS (Espectrometria de Massa com uso de Aceleradores) [PhD thesis]. Universidade Federal Fluminense. Niteroi, Brazil. 183 p.Google Scholar
Santos, GM, Gomes, PRS, Yokoyama, Y, di Tada, ML, Cresswell, R, Fifield, KL. 1999b. Datação por 14C através de Espectrometria de Massa com Aceleradores. Revista de Física Aplicada e Instrumentação 14(1):112.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(2):355–63.Google Scholar
Turcq, B, Siffedine, A, Martin, L, Absy, ML, Soubies, F, Suguio, K, Volkeimer-Ribeiro, C. 1998. Amazon forest fires: a Lacustrine report of 7000 years. Ambio 27(2):139–42.Google Scholar
Vandal, GM, Fitzgerald, WF, Boutron, CF, Candelone, JP. 1993. Variations of mercury deposition to Antarctica over the past 34,000 years. Nature 362:621–3.Google Scholar