Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T15:25:07.350Z Has data issue: false hasContentIssue false

Centuries of Marine Radiocarbon Reservoir Age Variation Within Archaeological Mesodesma Donacium Shells from Southern Peru

Published online by Cambridge University Press:  18 July 2016

Kevin B Jones*
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th St., Tucson, Arizona 85721, USA Now at: US Geological Survey, 12201 Sunrise Valley Dr., Mail Stop 956, Reston, Virginia 20192, USA
Gregory W L Hodgins
Affiliation:
NSF-Arizona AMS Facility, 1118 E. 4th St., Tucson, Arizona 85721, USA
Miguel F Etayo-Cadavid
Affiliation:
Department of Geological Sciences, University of Alabama, Box 870338, Tuscaloosa, Alabama 35487, USA
C Fred T Andrus
Affiliation:
Department of Geological Sciences, University of Alabama, Box 870338, Tuscaloosa, Alabama 35487, USA
Daniel H Sandweiss
Affiliation:
Climate Change Institute/Department of Anthropology, University of Maine, Stodder Hall, Orono, Maine 04469, USA
*
Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mollusk shells provide brief (<5 yr per shell) records of past marine conditions, including marine radiocarbon reservoir age (R) and upwelling. We report 21 14C ages and R calculations on small (∼2 mg) samples from 2 Mesodesma donacium (surf clam) shells. These shells were excavated from a semi-subterranean house floor stratum 14C dated to 7625 ± 35 BP at site QJ-280, Quebrada Jaguay, southern Peru. The ranges in marine 14C ages (and thus R) from the 2 shells are 530 and 170 14C yr; R from individual aragonite samples spans 130 ± 60 to 730 ± 170 14C yr. This intrashell 14C variability suggests that 14C dating of small (time-slice much less than 1 yr) marine samples from a variable-R (i.e. variable-upwelling) environment may introduce centuries of chronometric uncertainty.

Type
Marine
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Andrus, CFT, Hodgins, GWL, Sandweiss, DH, Crowe, DE. 2005. Molluscan radiocarbon as a proxy for El Niño-related upwelling variation in Peru. In: Mora, G, Surge, D, editors. Isotopic and Elemental Tracers of Cenozoic Climate Change. Geological Society of America (GSA) Special Paper 395. Boulder: Geological Society of America. p 1320.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.CrossRefGoogle Scholar
Carré, M, Bentaleb, I, Blamart, D, Ogle, N, Cardenas, F, Zevallos, S, Kalin, RM, Ortlieb, L, Fontugne, M. 2005. Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 228(1–2):425.CrossRefGoogle Scholar
Clark, GR II. 1974. Growth lines in invertebrate skeletons. Annual Review of Earth and Planetary Science 2:7799.CrossRefGoogle Scholar
Culleton, BJ, Kennett, DJ, Ingram, BL, Erlandson, JM, Southon, JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387400.CrossRefGoogle Scholar
Donahue, DJ, Linick, TW, Jull, AJT. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135–42.CrossRefGoogle Scholar
Erickson, DL, Smith, BD, Clarke, AC, Sandweiss, DH, Tuross, N. 2005. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proceedings of the National Academy of Sciences 102(51):18,31520.CrossRefGoogle Scholar
Farmer, DM, McNeil, CL, Johnson, BD. 1993. Evidence for the importance of bubbles in increasing air-sea gas flux. Nature 361(6413):620–3.CrossRefGoogle Scholar
Fontugne, M, Carré, M, Bentaleb, I, Julien, M, Lavallée, D. 2004. Radiocarbon reservoir age variations in the south Peruvian upwelling during the Holocene. Radiocarbon 46(2):531–7.CrossRefGoogle Scholar
Gillikin, DP, Lorrain, A, Meng, L, Dehairs, F. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71(12):2936–46.CrossRefGoogle Scholar
Grossman, EL, Ku, T-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology (Isotope Geoscience Section) 59:5974.CrossRefGoogle Scholar
Huyer, A, Smith, RL, Paluszkiewicz, T. 1987. Coastal upwelling off Peru during normal and El Niño times, 1981–1984. Journal of Geophysical Research 92(C13):14,297307.CrossRefGoogle Scholar
Jones, KB, Hodgins, GWL, Dettman, D, Andrus, CFT, Nelson, A, Etayo-Cadavid, MF. 2007. Seasonal variations in Peruvian marine reservoir age from pre-bomb Argopecten purpuratus shell carbonate. Radiocarbon 49(2):877–88.CrossRefGoogle Scholar
Jones, KB, Hodgins, GWL, Etayo-Cadavid, MF, Andrus, CFT. 2009. Upwelling signals in radiocarbon from early 20th-century Peruvian bay scallop (Argopecten purpuratus) shells. Quaternary Research 72(3):452–6.CrossRefGoogle Scholar
Lorrain, A, Paulet, Y-M, Chauvaud, L, Dunbar, R, Mucciarone, D, Fontugne, M. 2004. δ13C variation in scallop shells: increasing metabolic carbon contribution with body size? Geochimica et Cosmochimica Acta 68(17):3509–19.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.CrossRefGoogle Scholar
Mook, WG, Vogel, JC. 1968. Isotopic equilibrium between shells and their environment. Science 159(3817):874–5.CrossRefGoogle Scholar
Owen, BD. 2002. Marine carbon reservoir age estimates for the far south coast of Peru. Radiocarbon 44(3):701–8.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Sandweiss, DH, McInnis, H, Burger, RL, Cano, A, Ojeda, B, Paredes, R, Sandweiss, MdC, Glascock, MD. 1998. Quebrada Jaguay: early South American maritime adaptations. Science 281(5834):1830–2.CrossRefGoogle ScholarPubMed
Slota, PJ Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–6.CrossRefGoogle Scholar
Southon, JR, Rodman, AO, True, D. 1995. A comparison of marine and terrestrial radiocarbon ages from northern Chile. Radiocarbon 37(2):389–93.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Tanner, BR. 2001. Lithic analysis of chipped stone artifacts recovered from Quebrada Jaguay, Peru [Master's thesis]. University of Maine, Orono. Available online at URL: http://www.library.umaine.edu/theses/pdf/TannerBR2001.pdf.Google Scholar
Tarifeño-Silva, E. 1980. Studies on the biology of the surf clam Mesodesma donacium (Lamarck, 1818) (Bivalvia: Mesodesmatidae) from Chilean sandy beaches [PhD dissertation]. University of California, Los Angeles. 229 p.Google Scholar
Taylor, RE, Berger, R. 1967. Radiocarbon content of marine shells from the Pacific coasts of Central and South America. Science 158(3805):1180–2.CrossRefGoogle ScholarPubMed
Thompson, LG, Mosley-Thompson, E, Dansgaard, W, Grootes, PM. 1986. The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya Ice Cap. Science 234(4774):361–4.CrossRefGoogle ScholarPubMed
Wallace, DWR, Wirick, CD. 1992. Large air-sea gas fluxes associated with breaking waves. Nature 356(6371):694–6.CrossRefGoogle Scholar