Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:15:47.254Z Has data issue: false hasContentIssue false

Cathodoluminescence and Laser-Induced Fluorescence of Calcium Carbonate: A Review of Screening Methods for Radiocarbon Dating of Ancient Lime Mortars

Published online by Cambridge University Press:  28 April 2020

Michael B Toffolo*
Affiliation:
Institut de Recherche sur les Archéomatériaux-Centre de Recherche en Physique Appliquée à l’Archéologie (IRAMAT-CRP2A), UMR 5060 CNRS, Université Bordeaux Montaigne, 8 Esplanade des Antilles, Pessac33607, France
Giulia Ricci*
Affiliation:
Dipartimento di Geoscienze, Università degli Studi di Padova, Via Giovanni Gradenigo 6, Padova35131, Italy
Rémy Chapoulie
Affiliation:
Institut de Recherche sur les Archéomatériaux-Centre de Recherche en Physique Appliquée à l’Archéologie (IRAMAT-CRP2A), UMR 5060 CNRS, Université Bordeaux Montaigne, 8 Esplanade des Antilles, Pessac33607, France
Luisa Caneve
Affiliation:
ENEA, Technical Unit for the Development of Applications of Radiations, CR Frascati, Via Enrico Fermi 45, Frascati00044, Italy
Ifat Kaplan-Ashiri
Affiliation:
Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
*
*Corresponding authors. Michael Toffolo and Giulia Ricci contributed equally to this work. Email: [email protected]; [email protected].
*Corresponding authors. Michael Toffolo and Giulia Ricci contributed equally to this work. Email: [email protected]; [email protected].

Abstract

Accurate radiocarbon (14C) dating of lime mortars requires a thorough mineralogical characterization of binders in order to verify the presence of carbon-bearing contaminants. In the last 20 years, cathodoluminescence (CL) has been widely used for the identification of geologic calcium carbonate (CaCO3) aggregates and unreacted lime lumps within the particle size fraction selected for carbon recovery. These components are major sources of older and younger carbon, respectively, and should be removed to obtain accurate age determinations. More recently, laser-induced fluorescence (LIF) has provided another means of investigating the preservation state and composition of CaCO3 binders. Considered the growing interest of the mortar dating community in the latest advancements of these analytical methods, here we review the principles of CL and LIF of CaCO3, their instrument setup, and their application to the characterization of ancient lime mortars used for 14C dating. In addition, we provide examples of SEM-CL and LIF analyses using high-resolution instrumentation, we discuss current issues and propose future lines of research.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Addis, A, Secco, M, Preto, N, Marzaioli, F, Passariello, I, Brogiolo, GP, Chavarria Arnau, A, Artioli, G, Terrasi, F. 2016. New strategies for radiocarbon dating of mortars: Multi-step purification of the lime binder. In: Papayianni I, Stefanidou M, Pachta V, editors. Proceedings of the 4th Historic Mortar Conference, 10–12 October 2016, Santorini. p. 665–672.Google Scholar
Addis, A, Secco, M, Marzaioli, F, Artioli, G, Chavarria Arnau, A, Passariello, I, Terrasi, F, Brogiolo, GP. 2019. Selecting the most reliable 14C dating material inside mortars: the origin of the Padua Cathedral. Radiocarbon 61(2):375393.CrossRefGoogle Scholar
Al-Bashaireh, K, Hodgins, GW. 2012. Lime mortar and plaster: a radiocarbon dating tool for dating Nabatean structures in Petra, Jordan. Radiocarbon 54(3–4):905914.CrossRefGoogle Scholar
Al-Bashaireh, K. 2013. Plaster and mortar radiocarbon dating of Nabatean and Islamic structures, south Jordan. Archaeometry 55(2):329354.10.1111/j.1475-4754.2012.00677.xCrossRefGoogle Scholar
Ammari, F, Del Solar, N, Chapoulie, R, Bousquet, B. 2016. Chemometrics applied to cathodoluminescence images: a new approach to classify pre-Columbian artefacts from northern Peru. Environmental Science and Pollution Research 24(3):22052209.10.1007/s11356-016-7992-3CrossRefGoogle ScholarPubMed
Anglos, D, Solomidou, M, Zergioti, I, Zafiropulos, V, Papazoglu, TG, Fotakis, C. 1996. Laser-induced fluorescence in artwork diagnostics: An application in pigment analysis. Applied Spectroscopy 50(10):13311334.CrossRefGoogle Scholar
Artioli, G. 2010. Scientific methods and cultural heritage: An introduction to the application of materials science to archaeometry and conservation science. Oxford: Oxford University Press.CrossRefGoogle Scholar
Artioli, G, Secco, M, Addis, A, Bellotto, M. 2017. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. In: Pöllmann, H, editor. Cementitious materials: Composition, properties, application. Berlin: De Gruyter. p 147158.10.1515/9783110473728-006CrossRefGoogle Scholar
Artioli, G, Secco, M, Addis, A. 2019. The Vitruvian legacy: mortars and binders before and after the Roman world. EMU Notes in Mineralogy 20(4):151202.Google Scholar
Bandieri, C. 2017. Produrre malte in Appennino Reggiano (secoli XII–XIV). Storia e archeometria delle tecniche del costruire in tre casi di studio. Unpublished MA thesis: University of Bologna.Google Scholar
Baudelet, M, editor. 2014. Laser spectroscopy for sensing: Fundamentals, techniques and applications. Elsevier.Google Scholar
Bechtel, F, Schvoerer, M. 1984. La cathodoluminescence. Application à l’étude de la texture des pâtes céramiques. In: Hackens, T, Schvoerer, M, editors. PACT 10, Datation–Caractérisation des céramiques anciennes: Presses du CNRS. p. 247260.Google Scholar
Bergamo, M. 2017. Le malte di calce del complesso di Santo Stefano a Bologna Analisi archeologiche e archeometriche [unpublished MA thesis]. University Ca’ Foscari-Venice.Google Scholar
Boaretto, E, Poduska, KM. 2013. Materials science challenges in radiocarbon dating: The case of archaeological plasters. Journal of the Minerals, Metals & Materials Society (TMS) 65:481488.10.1007/s11837-013-0573-8CrossRefGoogle Scholar
Boggs, S, Krinsley, D. 2006. Application of cathodoluminescence imaging to the study of sedimentary rocks. Cambridge: Cambridge University Press.10.1017/CBO9780511535475CrossRefGoogle Scholar
Bowman, S. 1990. Radiocarbon dating. London: British Museum Press.Google Scholar
Bozlee, BJ, Misra, AK, Sharma, SK, Ingram, M. 2005. Remote Raman and fluorescence studies of mineral samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61(10):23422348.CrossRefGoogle ScholarPubMed
Calderón, T, Aguilar, M, Jaque, F, Coy-Yll, R. 1984. Thermoluminescence from natural calcites. Journal of Physics C: Solid State Physics 17:20272038.CrossRefGoogle Scholar
Caneve, L, Spizzichino, V, Antonelli, E, Bertani, L. 2018. Study of ancient egyptians artefatcs by non–destructive laser based techniques. Cassino (Italy). p 374378.CrossRefGoogle Scholar
Chapoulie, R. 2018. Catodoluminiscencia para el estudio de cerámicas y otros materiales inorgánicos. Arqueometria. Estudios analíticos de materiales arqueológicos. Institut Français des Etudes Andines. p. 4560.CrossRefGoogle Scholar
Chapoulie, R, Bechtel, F, Borschneck, D, Schvoerer, M, Remond, G. 1995. Cathodoluminescence of some synthetic calcite crystals. Investigation on the role played by cerium. Scanning Microscopy Supplement 9:225232.Google Scholar
Chapoulie, R, Daniel, F. 2007. Cathodoluminescence: recherches sur une méthode d’analyse en archéométrie.Google Scholar
Chapoulie, R, Delery, C, Daniel, F, Vendrell-Saz, M. 2008. Cuerda–seca ceramics from Al-Andalus, Islamic Spain and Portugal (10th–12th centuries AD): Investigation with SEM-EDX and cathodoluminescence. Archaeometry 47(3):519534.CrossRefGoogle Scholar
Chapoulie, R, Robert, B, Casenave, S. 2016. The cathodoluminescence phenomenon used for the study of ancient ceramics and stones. International Journal on Culture and Heritage at Risk – cities of memory 1:5372.Google Scholar
Chapoulie, R, Del Solar-Velarde, N. 2018. Microscopía electrónica de barrido, espectrometría de rayos X y catodoluminiscencia. Arqueometria. Estudios analíticos de materiales arqueológicos: Institut Français des Etudes Andines. p. 2943.10.4000/books.ifea.12740CrossRefGoogle Scholar
Colao, F, Caneve, L, Fantoni, R, Fiorani, L. 2008. Scanning hyperspectral lidar fluorosensor for fresco diagnostics in laboratory and field campaigns. Madrid (Spain). p. 149155.CrossRefGoogle Scholar
Correcher, V, Gomez–Ros, JM, Dogan, T, Garcia-Guinea, J, Topaksu, M. 2017. Optical, spectral and thermal properties of natural pumice glass. Radiation Physics and Chemistry 130:6975.CrossRefGoogle Scholar
Cultrone, G, Rodriguez-Navarro, C, Sebastian, E, Cazalla, O, De La Torre, MJ. 2001. Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy 13:621634.10.1127/0935-1221/2001/0013-0621CrossRefGoogle Scholar
Donovan, RJ, Telle, HH, Gonza, A. 2007. Laser-induced fluorescence spectroscopy. In: Telle, HH, Ureña, AG, Donovan, RJ, editors. Laser chemistry: Spectroscopy, dynamics and applications. Wiley. p 101118.Google Scholar
Elsen, J. 2006. Microscopy of historic mortars—a review. Cement and Concrete Research 36:14161424.10.1016/j.cemconres.2005.12.006CrossRefGoogle Scholar
Fantoni, R, Caneve, L, Colao, F, Fiorani, L, Palucci, A, Dell’Erba, R, Fassina, V. 2013. Laser–induced fluorescence study of medival frescoes by Giusto de’ Menabuoi. Journal of Cultural Heritage 14S:S59S65.CrossRefGoogle Scholar
Gaft, M, Reisfeld, R, Panczer, G, Blank, P, Boulon, G. 1998. Laser-induced time-resolved luminescence of minerals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 54(13):21632175.CrossRefGoogle Scholar
Gaft, M, Reisfeld, R, Panczer, G. 2015. Modern luminescence spectroscopy of minerals and materials. Springer.CrossRefGoogle Scholar
Götze, J, Plötze, M, Habermann, D. 2001. Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz – a review. Mineralogy and Petrology 71:225250.Google Scholar
Götze, J. 2012. Application of cathodoluminescence microscopy and spectroscopy in geosciences. microscopy and microanalysis 18:12701284.10.1017/S1431927612001122CrossRefGoogle ScholarPubMed
Habermann, D, Neuser, RD, Richter, DK. 1998. Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art. Sedimentary Geology 116:1324.10.1016/S0037-0738(97)00118-8CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, et al. 2017. Preparation and dating of mortar samples–Mortar Dating Intercomparison Study (MODIS). Radiocarbon 59(5):114.CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Boaretto, E, Lindroos, A, Heinemeier, J, Ringbom, Å, Hueglin, S, Michalska, D, Hajdas, I, Marzaioli, F, et al. 2016. Analysis and characterisation of historic mortars for aboslute dating. In: Papayianni I, Stefanidou M, Pachta V, editors. Proceedings of the 4th Historic Mortar Conference, 10–12 October 2016, Santorini. p 656–664.Google Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, et al. 2017. Mortar dating methodology: Assessing recurrent issues and needs for future research. Radiocarbon 59(6):18591871.CrossRefGoogle Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123:487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörndóttir, Á. 2010. Successful AMS 14C dating of non–hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.10.1017/S0033822200045124CrossRefGoogle Scholar
Hunt, AMW. 2013. Development of quartz cathodoluminescence for the geological grouping of archaeological ceramics: firing effects and data analysis. Journal of Archaeological Science 40(7):29022912.CrossRefGoogle Scholar
Ishihara, S, Sahoo, P, Deguchi, K, Ohki, S, Tansho, M, Shimizu, T, Labuta, J, Hill, JP, Ariga, K, Watanabe, K, et al. 2013. Dynamic breathing of CO2 by hydrotalcite. Journal of the American Chemical Society 135:1804018043.10.1021/ja4099752CrossRefGoogle ScholarPubMed
Kusano, N, Nishido, H, Inoue, K. 2014. Cathodoluminescence of calcite decomposed from dolomite in high-temperature skarn. Journal of Mineralogical and Petrological Sciences 109:286290.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201:742.CrossRefGoogle Scholar
Lakowicz, JR. 2006. Principles of fluorescence spectroscopy. Springer.CrossRefGoogle Scholar
Lazic, V, Colao, F, Fantoni, R, Palucci, A, Spizzichino, V, Borgia, I, Brunetti, BG, Sgamellotti, A. 2003. Characterisation of lustre and pigment composition in ancient pottery by laser induced fluorescence and breakdown spectroscopy. Journal of Cultural Heritage 4:303308.10.1016/S1296-2074(02)01212-8CrossRefGoogle Scholar
Lee, MR, Martin, RW, Trager-Cowan, C, Edwards, PR. 2005. Imaging of cathodoluminescence zoning in calcite by scanning electron microscopy and hyperspectral mapping. Journal of Sedimentary Research 75(2):313322.CrossRefGoogle Scholar
Li, C, Qi, Y, Li, Q, Li, D, Hou, W. 2014. Preparation and fluoescence properties of 6-carboxyfluorescein/hydrotalcite nanocomposites. Journal of Luminescence 147:273277.10.1016/j.jlumin.2013.11.048CrossRefGoogle Scholar
Lichtenberger, A, Lindroos, A, Raja, R, Heinemeier, J. 2015. Radiocarbon analysis of mortar from Roman and Byzantine water management installations in the Northwest Quarter of Jerash, Jordan. Journal of Archaeological Science: Reports 2:114127.Google Scholar
Lindroos, A. 2005. Carbonate phases in historical building mortars and pozzolana concrete. Implications for AMS 14C dating [unpublished PhD thesis]. Åbo Akademi University.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörndóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49:4767.CrossRefGoogle Scholar
Lindroos, A, Regev, L, Oinonen, M, Ringbom, Å, Heinemeier, J. 2012. 14C dating of fire-damaged mortars from medieval Finland. Radiocarbon 54:915932.CrossRefGoogle Scholar
Lindroos, A, Ranta, H, Heinemeier, J, Lill, J-O. 2014a. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 331:220224.CrossRefGoogle Scholar
Lindroos, A, Orsel, E, Heinemeier, J, Lill, J-O, Gunnelius, K. 2014b. Radiocarbon dating of Dutch mortars made from burned shells. Radiocarbon 56(3):959968.10.2458/56.16508CrossRefGoogle Scholar
Machel, HG. 2000. Application of Cathodoluminescence to Carbonate Diagenesis. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D, editors. Cathodoluminescence in geosciences. Berlin: Springer Verlag. p. 271301.CrossRefGoogle Scholar
MacRae, CM, Wilson, NC. 2008. Luminescence Database I—Minerals and Materials. Microscopy and Microanalysis 14:184204.CrossRefGoogle ScholarPubMed
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361:431439.CrossRefGoogle Scholar
Mills, SJ, Christy, AG, Génin, J-MR, Kameda, T, Colombo, F. 2012. Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine 76(5):12891336.CrossRefGoogle Scholar
Mounier, A, Le Bourdon, G, Aupetit, C, Lazare, S, Biron, C, Pérez–Arantegui, J, Almazán, D, Aramendia, J, Prieto-Taboada, N, Fdez-Ortiz de Vallejuelo, S, et al. 2018. Red and blue colors on 18th–19th century Japanese woodblock prints: In situ analyses by spectrofluorimetry and complementary non-invasive spectroscopic methods. Microchemical Journal 140:129141.10.1016/j.microc.2018.04.023CrossRefGoogle Scholar
Murakami, T. 2016. Materiality, regimes of value, and the politics of craft production, exchange, and consumption: A case of lime plaster at Teotihuacan, Mexico. Journal of Anthropological Archaeology 42:5678.CrossRefGoogle Scholar
Murakami, T, Hodgins, G, Simon, AW. 2013. Characterization of lime carbonates in plasters from Teotihuacan, Mexico: preliminary results of cathodoluminescence and carbon isotope analyses. Journal of Archaeological Science 40:960970.10.1016/j.jas.2012.08.045CrossRefGoogle Scholar
Nevin, A, Spoto, G, Anglos, D. 2011. Laser spectroscopiesfor elemental and molecular analysis in art and archaeology. Applied Physics A: Materials Science & Processing 106(2):339361.10.1007/s00339-011-6699-zCrossRefGoogle Scholar
Ostwald, WZ. 1897. Studien über die Bildung und Umwandlung fester Körper. Zeitschrift für Physikalische Chemie 22:289330.CrossRefGoogle Scholar
Pachiaudi, C, Marechal, J, Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1986. Isotopic fractionation of carbon during CO2 absorption by mortar. Radiocarbon 28(2A):691–617.CrossRefGoogle Scholar
Piponnier, D, Bechtel, F, Floorin, D, Molera, J, Schvoerer, M, Vendrell, M. 1997. Apport de la cathodoluminescence à l’étude des transformations de phases cristallines dans des céramiques kaolinitiques carbonatées. Key Engineering Minerals 132–136:14701473.10.4028/www.scientific.net/KEM.132-136.1470CrossRefGoogle Scholar
Poduska, KM, Regev, L, Berna, F, Mintz, E, Milevski, I, Khalaily, H, Weiner, S, Boaretto, E. 2012. Plaster characterization at the PPNB site of Yiftahel (Israel) including the use of 14C: implications for plaster production, preservation, and dating. Radiocarbon 54:887896.10.1017/S0033822200047536CrossRefGoogle Scholar
Polikreti, K, Christofides, C. 2007. Laser induced micro–photoluminescence of marble and application to authenticity testing of ancient objects. Applied Physics A: Materials Science & Processing 90:285291.10.1007/s00339-007-4266-4CrossRefGoogle Scholar
Prevosti, M, Lindroos, A, Heinemeier, J, Coll, R. 2016. AMS 14C dating at Can Ferrerons, a Roman octagonal building in Premià de Mar, Barcelona. Journal of Archaeological Science: Reports 6:275283.Google Scholar
Ricci, G, Caneve, L, Pedron, D, Holesch, N, Zendri, E. 2016. A multi-spectroscopic study for the characterization and definition of production techniques of German ceramic sherds. Microchemical Journal 126:104112.CrossRefGoogle Scholar
Ricci, G, Secco, M, Marzaioli, F, Terrasi, F, Passariello, I, Addis, A, Lampugnani, P, Artioli, G. 2020. The Cannero Castle (Italy): development of radiocarbon dating methodologies in the framework of the layered double hydroxide mortars. Radiocarbon 62. This issue.CrossRefGoogle Scholar
Richter, DK, Götte, T, Götze, J, Neuser, RD. 2003. Progress in application of cathodoluminescence (CL) in sedimentary petrology. Mineralogy and Petrology 79:127–66.CrossRefGoogle Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56:619635.10.2458/56.17469CrossRefGoogle Scholar
Sahoo, P, Ishihara, S, Yamada, K, Deguchi, K, Ohki, S, Tansho, M, Shimizu, T, Eisaku, N, Sasai, R, Labuta, J, et al. 2014. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide. Applied Materials and Interfaces 6:1835218359.CrossRefGoogle ScholarPubMed
Salh, R. 2011. Defect related luminescence in silicon dioxide network: a review. In: Basu, S, editor. Crystalline silicon—properties and uses. Rijeka: InTech. p. 135172.Google Scholar
Sternbeck, J. 1997. Kinetics of rhodochrosite crystal growth at 25°C: The role of surface speciation. Geochimica et Cosmochimica Acta 61(4):785793.10.1016/S0016-7037(96)00379-1CrossRefGoogle Scholar
Stoops, G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Madison (WI): Soil Science Society of America.Google Scholar
Tepper, Y, Erickson-Gini, T, Farhi, Y, Bar-Oz, G. 2018. Probing the Byzantine/Early Islamic transition in the Negev: the renewed Shivta excavations, 2015–2016. Tel Aviv 45(1):120152.10.1080/03344355.2018.1412058CrossRefGoogle Scholar
Toffolo, MB, Regev, L, Mintz, E, Poduska, KM, Shahack-Gross, R, Berthold, C, Miller, CE, Boaretto, E. 2017. Accurate radiocarbon dating of archaeological ash using pyrogenic aragonite. Radiocarbon 59:231249.CrossRefGoogle Scholar
Toffolo, MB, Ricci, G, Caneve, L, Kaplan-Ashiri, I. 2019. Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Scientific Reports 9:16170.10.1038/s41598-019-52587-7CrossRefGoogle ScholarPubMed
Toffolo, MB, Regev, L, Mintz, E, Kaplan-Ashiri, I, Berna, F, Dubernet, S, Xin, Y, Regev, J, Boaretto, E. 2020. Structural characterization and thermal decomposition of lime binders allow accurate radiocarbon age determinations of aerial lime plaster. Radiocarbon 62. This issue.CrossRefGoogle Scholar
Vieira Ferreira, LF, Ferreira Machado, I, Ferraria, AM, Casimiro, TM, Colomban, P. 2013. Portuguese tin-glazed earthenware from the 16th century: A spectroscopic characterization of pigments, glazes and pastes. Applied Surface Science 285:144152.10.1016/j.apsusc.2013.08.016CrossRefGoogle Scholar
Zhao, Y, Li, J-G, Fang, F, Chu, N, Ma, H, Yang, X. 2012. Structure and luminescence behaviour of as-synthesized, calcined, and restored MgAlEu-LDH with high crystallinity. Dalton Transactions 41:12175121784.10.1039/c2dt31249bCrossRefGoogle ScholarPubMed
Supplementary material: PDF

Toffolo et al. Supplementary Materials

Toffolo et al. Supplementary Materials

Download Toffolo et al. Supplementary Materials(PDF)
PDF 689.3 KB