Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-18T23:53:35.077Z Has data issue: false hasContentIssue false

Calibration of the 14C Time Scale Beyond 22,000 BP

Published online by Cambridge University Press:  18 July 2016

Mebus A. Geyh
Affiliation:
Niedersächsisches Landesamt für Bodenforschung, P.O. Box 510153, D-30631 Hannover, Germany
Christian Schlüchter
Affiliation:
Geological Institute, University of Bern, Baltzerstrasse 1, CH–3012 Bern, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The conventional 14C time scale between 11,500 and 22,000 sidereal years has been calibrated by TIMS U/Th dates for corals. Only a few studies have been made for the time beyond this range. Obtaining samples suitable for numerical dating or estimating the reservoir correction of the 14C dates has been difficult, but we do not have these problems with TIMS U/Th dating of interstadial and interglacial lignite, because reservoir corrections are unnecessary.

Type
Part 1: Methods
Copyright
Copyright © The American Journal of Science 

References

Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. and Woodward, F. I. 1990 Increases in terrestrial carbon storage from the Last Glacial maximum to the present. Nature 348: 711714.Google Scholar
Bard, E., Hamelin, B., Fairbanks, R. G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados Corals. Nature 345: 405410.Google Scholar
Bard, E., Arnold, M., Fairbanks, R. G. and Hamelin, B. 1993 230Th-234U and 14C ages obtained by mass spectrometry on corals. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 191199.CrossRefGoogle Scholar
Barnola, J.-M., Korotkevich, Y. S. and Lorius, C. 1987 Vostok ice core provides 160,000 year record of atmospheric CO2 . Nature 329: 408414.Google Scholar
Bell, W. T. 1991 Thermoluminescence dates for the Lake Mungo aboriginal fireplaces and the implication for radiocarbon time scale. Archaeometry 33: 4350.Google Scholar
Bischoff, J. L., Ludwig, K., Garcia, J. F., Carbobell, E., Vaquero, M., Stafford, T. W. Jr. and Jull, A. J. T. 1994 Dating of the basal Aurignacian sandwich at Abric Romani (Catalunya, Spain) by radiocarbon and uranium-series. Journal of Archaeological Science 21: 541551.Google Scholar
Deino, A. L. and Curtis, G. H. 1994 14C and 40Ar/39Ar dating of the Campanian ignimbrite, Phlegrean Fields, N.Y. ICOG-8 Abstract Volume: 77.Google Scholar
Edwards, R. L., Beck, J. W., Burr, G. S., Donahue, D. J., Chappell, J. M. A., Bloom, A. L., Druffel, E. R. M. and Taylor, F. W. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962967.CrossRefGoogle ScholarPubMed
Fritz, A. and Ucik, F. H. 1996 Neue Ergebnisse aus dem Würmglazial Kärntens. Carinthia II: 361386.Google Scholar
Geyh, M. A. 1970 Zeitliche Abgrenzung von Klimaänderungen mit 14C-Daten von Kalksinter und organischen Substanzen. Beihefte Geologisches Jahrbuch 98: 1522.Google Scholar
Heijnis, H. and van der Plicht, J. 1992 Uranium/thorium dating of Late Pleistocene peat deposits in NW Europe, uranium/thorium isotope systematic and open-system behaviour of peat layers. Chemical Geology (Isotope Geoscience Letters) 94: 161171.Google Scholar
Kaufman, A. 1971 U-series dating of Dead Sea basin carbonates. Geochimica et Cosmochimica Acta 35: 12691626.Google Scholar
Keir, R. S. 1983 Reduction of thermohaline circulation during the deglaciation: The effect on atmospheric radiocarbon and CO2 . Earth Planetary Science Letters 64: 445456.CrossRefGoogle Scholar
Kitagawa, H. and van der Plicht, J. 1997 A 40,000-year varve chronology from Lake Suigetsu, Japan: Extension of the 14C Calibration Curve. Radiocarbon, this issue.Google Scholar
Labeyrie, J., Duplessy, J.-C., Delibrias, G. and Letolle, R. 1967 Etude des températures des climats anciens par la mesure de l'oxygène-18, du carbone-13 et du carbone-14 dans les concretions des cavernes. Radioactive Dating and Methods of Low-Level Counting. Vienna, IAEA: 153160.Google Scholar
Luo, S. and Ku, T.-L. 1991 U-series isochron dating: A generalized method employing total-sample dissolution. Geochimica et Cosmochimica Acta 55: 555564.CrossRefGoogle Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1991 Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18(10): 18851888.Google Scholar
Prentice, K. C. and Fung, I. Y. 1990 The sensitivity of terrestrial carbon storage to climatic change. Nature 346: 4851.Google Scholar
Siegenthaler, U., Heimann, M. and Oeschger, H. 1980 14C variations caused by changes in the global carbon cycle. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 177191.CrossRefGoogle Scholar
Schlüchter, Ch., Maisch, M. and Suter, J. 1985 Stratigraphische Nomenklatur und Klassifikation des Eiszeit-alters. Ein Ziwschenbericht über die Arbeit am ersten Referenzprofil “Gossau”/Züricher Oberland. Physische Geographie 16: 722.Google Scholar
Schlüchter, Ch., Maisch, M., Suter, J., Fitze, P., Keller, W. A., Burga, C. A. and Wynistorf, E. 1987 Das Schieferkohlen-Profil Gossau (Kanton Zürich) und seine stratigraphische Stellung innerhalb der letzten Eiszeit. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 132(3): 135174.Google Scholar
Sternberg, R. S. and Damon, P. E. 1992 Implications of dipole moment secular variations from 50,000–10,000 years for the radiocarbon record. Radiocarbon 34(2): 189198.Google Scholar
Stuiver, M. and Kra, R. 1986 Calibration Issue. Radiocarbon 28(2B): 805–1030.Google Scholar
Stuiver, M. and Reimer, P. J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. In Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35(1): 215230.CrossRefGoogle Scholar
Voelker, A., Sarnthein, H., Grootes, P., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, M. 1998 Correlation of marine 14C ages from the Nordic Seas with the GISP2 isotope record: Implications for 14C calibration beyond 25 ka BP. Radiocarbon, this issue.Google Scholar
Vogel, J. C. 1980 Accuracy of the radiocarbon time scale beyond 15,000 BP. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(2): 210218.Google Scholar
Vogel, J. C. 1983 14C variations during the Upper Pleistocene. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 213218.Google Scholar
Vogel, J. C. and Kronfeld, J. 1997 Calibration of radiocarbon dates for the late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1): 2732.CrossRefGoogle Scholar