Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T06:26:15.863Z Has data issue: false hasContentIssue false

Calibration of 14C Histograms1 : A Comparison of Methods

Published online by Cambridge University Press:  18 July 2016

Ad Stolk
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, The Netherlands
Torbjörn E. Törnqvist
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, The Netherlands
Kilian P. V. Hekhuis
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, The Netherlands
Henk J. A. Berendsen
Affiliation:
Department of Physical Geography, Utrecht University, P.O. Box 80115, NL-3508 TC Utrecht, The Netherlands
Johannes van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interpretation of 14C histograms is complicated by the non-linearity of the 14C time scale in terms of calendar years, which may result in clustering of 14C ages in certain time intervals unrelated to the (geologic or archaeologic) phenomenon of interest. One can calibrate 14C histograms for such distortions using two basic approaches. The KORHIS method constructs a 14C histogram before calibration is performed by means of a correction factor. We present the CALHIS method based on the Groningen calibration program for individual 14C ages. CALHIS first calibrates single 14C ages and then sums the resulting calibration distributions, thus yielding a calibrated 14C histogram. The individual calibration distributions are normalized to a standard Gaussian distribution before superposition, thus allowing direct comparison among various 14C histograms. Several experiments with test data sets demonstrate that CALHIS produces significantly better results than KORHIS. Although some problems remain (part of the distortions due to 14C variations cannot be eliminated), we show that CALHIS offers good prospects for using 14C histograms, particularly with highly precise and accurate 14C ages.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Dehling, H. and van der Plicht, J. 1993 Statistical problems in calibrating radiocarbon dates. in Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35 (1): 239244.Google Scholar
de Jong, A. F. M. and Mook, W. G. 1981 Natural C-14 variations and consequences for sea-level fluctuations and frequency analysis of periods of peat growth. in van Loon, A. J., ed., Quaternary Geology: A Farewell to A. J. Wiggers. Geologie en Mijnbouw 60: 331336.Google Scholar
Geyh, M.A. 1969 Versuch einer chronologischen Gliederung des marinen Holozäns an der Nordseeküste mit Hilfe der statistischen Auswertung von 14C-Daten. Zeitschrift der Deutschen Geologischen Gesellschaft 118 (1966): 351360.Google Scholar
Geyh, M.A. 1971 Middle and young Holocene sea-level changes as global contemporary events. Geologiska Föreningens i Stockholm Förhandlingar 93: 679692.Google Scholar
Geyh, M.A. 1980 Holocene sea-level history: Case study of the statistical evaluation of 14C dates. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22 (3): 695704.CrossRefGoogle Scholar
Michczynska, D. J., Pazdur, M. F. and Walanus, A. 1990 Bayesian approach to probabilistic calibration of radiocarbon ages. in Mook, W. G. and Waterbolk, H. T., eds., Proceedings of the 2nd International Symposium 14C and Archaeology. Strasbourg, PACT 29: 6979.Google Scholar
Pazdur, M. F. and Michczyńska, D. J. 1989 Improvement of the procedure for probabilistic calibration of radiocarbon dates. in Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31 (3): 824832.CrossRefGoogle Scholar
Pearson, G. W. and Stuiver, M. 1986 High-precision calibration of the radiocarbon time scale, 500-2500 BC. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2B): 839862.Google Scholar
Pearson, G. W., Pilcher, J. R., Baillie, M. G. L., Corbett, D. M. and Qua, F. 1986 High-precision 14C measurement of Irish oaks to show the natural 14C variations from AD 1840 to 5210 BC. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2B): 911934.Google Scholar
Roeleveld, W. 1974 The Holocene evolution of the Groningen marine-clay district. Berichten van de Rijksdienst voor het Oudheidkundig Bodemonderzoek 24 (Supplement): 1132.Google Scholar
Shennan, I. 1987 Global analysis and correlation of sea-level data. in Devoy, R. J. N., ed., Sea Surface Studies. A Global View. London, Croom Helm: 198230.Google Scholar
Stolk, A., Hogervorst, K. and Berendsen, H. 1989 Correcting 14C histograms for the non-linearity of the radiocarbon time scale. Radiocarbon 31 (2): 169177.Google Scholar
Stuiver, M. and Pearson, G. W. 1986 High-precision calibration of the radiocarbon time scale, AD 1950-500 BC. in Stuiver, M. and Kra, R. S., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28 (2B): 805838.Google Scholar
Stuiver, M. and Reimer, P. 1989 Histograms obtained from computerized radiocarbon age calibration. in Long, A., Kra, R. S., and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31 (3): 817823.Google Scholar
Stuiver, M. and Reimer, P. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. in Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35 (1): 215230.Google Scholar
Törnqvist, T. E. and Bierkens, M. F. P. 1994 How smooth should curves be for calibrating radiocarbon ages? Radiocarbon (36) 1: 1126.CrossRefGoogle Scholar
van der Plicht, J. 1993 The Groningen radiocarbon calibration program. in Stuiver, M., Long, A. and Kra, R. S., eds., Calibration 1993. Radiocarbon 35 (1): 231237.Google Scholar
van der Plicht, J. and Mook, W. G. 1989 Calibration of radiocarbon ages by computer. in Long, A., Kra, R. S. and Srdoč, D., eds., Proceedings of the 13th International 14C Conference. Radiocarbon 31(3): 805816.Google Scholar