Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T07:48:57.159Z Has data issue: false hasContentIssue false

Calculation of Past Dead Carbon Proportion and Variability by the Comparison of AMS 14C and Tims U/TH Ages on Two Holocene Stalagmites

Published online by Cambridge University Press:  18 July 2016

Dominique Genty
Affiliation:
Université de Paris-Sud, Laboratoire d'Hydrologie et de Géochimie Isotopique, EP 1748, CNRS, bât. 504, F-91405 Orsay Cedex, France
Marc Massault
Affiliation:
Université de Paris-Sud, Laboratoire d'Hydrologie et de Géochimie Isotopique, EP 1748, CNRS, bât. 504, F-91405 Orsay Cedex, France
Mabs Gilmour
Affiliation:
The Open University, Department of Earth Sciences, Milton Keynes, MK7 6AA, England
Andy Baker
Affiliation:
University of Exeter, Department of Geography, Amory Building, Rennes Drive, EX4 4RJ Exeter, England
Sophie Verheyden
Affiliation:
Vrije Universiteit Brussel, WE-GISO, Pleinlaan 2, 1050 Brussel, Belgium
Eddy Kepens
Affiliation:
Vrije Universiteit Brussel, WE-GISO, Pleinlaan 2, 1050 Brussel, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Twenty-two radiocarbon activity measurements were made by accelerator mass spectrometry (AMS) on 2 Holocene stalagmites from Belgium (Han-stm1b) and from southwest France (Vil-stm1b). Sixteen thermal ionization mass spectrometric (TIMS) U/Th measurements were performed parallel to AMS analyses. The past dead carbon proportion (dcp) due to limestone dissolution and old soil organic matter (SOM) degradation is calculated with U/Th ages, measured calcite 14C activity and atmospheric 14C activity from the dendrochronological calibration curves. Results show that the dcp is different for the 2 stalagmites: between 10,800 and 4780 yr from present dcp=17.5% (σ=2.4; n=10) for Han-stm1b and dcp=9.4% (σ=1.6; n=6) between 3070 and 520 yr for Vil-stm1b. Despite a broad stability of the dcp during the time ranges covered by each sample, a slight dcp increase of about 5.0% is observed in the Han-stm1b sample between 8500 and 5200 yr. This change is synchronous with a calcite δ13C increase, which could be due to variation in limestone dissolution processes possibly linked with a vegetation change. The dcp and δ13C of the 2 studied samples are compared with 5 other modern stalagmites from Europe. Results show that several factors intervene, among them: the vegetation type, and the soil saturation leading to variable dissolution process systems (open/closed). The good correlation (R2=0.98) between the U/Th ages and the calibrated 14C ages corrected with a constant dcp validates the 14C method. However, the dcp error leads to large 14C age errors (i.e. 250–500 yr for the period studied), which is an obstacle for both a high-resolution chronology and the improvement of the 14C calibration curves, at least for the Holocene.

Type
Articles
Copyright
Copyright © 1999 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Baker, A, Smart, PL, Edwards, RL, Richards, DA. 1993. Annual growth bandings in a cave stalagmite. Nature 364:518–20.CrossRefGoogle Scholar
Baker, A, Genty, D, Dreybrodt, W, Barnes, W, Mockler, N, Grapes, J. 1997. Testing theoretically predicted stalagmite growth rate with Recent annually laminated samples: implications for past stalagmite deposition. Geockimica et Cosmochimica Acta 62: 393404.CrossRefGoogle Scholar
Baker, A, Genty, D. 1999. Fluorescence wavelength and intensity variations of cave waters. Journal of Hydrology 217:1934.Google Scholar
Baker, A, Ito, E, Smart, PL, McEvan, R. 1997. Elevated 13C in speleothem and implications for palaeovegetation studies. Chemical Geology (Isotope Geoscience) 136: 263–70.Google Scholar
Baker, A, Caseldine, CJ, Gilmour, MA, Charman, D, Proctor, CJ, Hawkesworth, CJ, Phillips, N. 1999. Stalagmite luminescence and peat humification records of palae-omoisture for the last 2,500 years. Earth and Planetary Science Letters 165:157–62.Google Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345:405–10.Google Scholar
Bar-Mattews, M, Ayalon, A, Mattews, A, Sass, E, Halicz, L. 1996. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave: implications for paleoclimate research in semi-arid regions. Geochimica et Cosmochimica Acta 60: 337–47.Google Scholar
Baskaran, M, Krishnamurphy, RV. 1993. Speleothems as proxy for the carbon isotope composition of atmospheric CO2 . Geophysical Research Letters 20: 2905–8.CrossRefGoogle Scholar
Bastin, B. 1990. L'analyse pollinique des concrétions stalagmitiques: méthodologie et résultats en provenance des grottes belges. Karstologia Mémoires 2: 310.Google Scholar
Bastin, B, Gewelt, M. 1986. Analyse pollinique et datation 14C de concrétions stalagmitiques holocènes: apports complémentaires des deux méthodes. Géographie Physique et Quaternaires 15(2): 185–96.Google Scholar
Blanchon, P, Shaw, J. 1995. Reef drowning during the last deglaciation: evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23:48.Google Scholar
Broecker, WS, Olson, EA. 1960. Radiocarbon measurements and annual rings in cave formations. Nature 185:93–4.Google Scholar
Bronk, RC. 1994. analysis of chronological information and radiocarbon calibration: the program OxCal. Archaeological Computing Newsletter 41:11–6.Google Scholar
Dansgaard, W, White, JWC, Johnson, SJ. 1989. The abrupt termination of the Younger Dryas climatic event. Nature 339:532–3.Google Scholar
Dever, L, Durand, R, Fontes, J-C, Vachier, P. 1982. Géochimie et teneurs isotopiques des systèmes saisonniers de dissolution de la calcite dans un sol sur craie. Geochimica et Cosmochimica Acta 46: 1947–56.Google Scholar
Dörr, H, Münnich, KO. 1986. Annual variations of the 14C content of soil CO2 . Radiocarbon 28(2A): 338–45.Google Scholar
Drake, JJ. 1983. The effect of geomorphology and seasonality on the chemistry of carbonate groundwater. Journal of Hydrology 61:223–36.Google Scholar
Drake, JJ. 1984. Theory and model for global carbonate solution by groundwater. In: LaFleur, RG, editor. Groundwater as a geomorphic agent. London, Allen & Unwin. p 210–26.Google Scholar
Dulinski, M, Rozanski, K. 1990. Formation of 13C/12C isotope ratios in speleothems: a semi-dynamic model. Radiocarbon 32(1):716.CrossRefGoogle Scholar
Edwards, RL, Chen, JH, Wasserberg, GJ. 1987. 238U-234U-232Th-230Th, systematics and precise measurement of time over the last 500,000 years. Earth and Planetary Science Letters 81:175192.Google Scholar
Fleyfel, M. 1979. Etude hydrologique, géochimique et isotopique des modalités de minéralisation et de transfert du carbone dans la zone d'infiltration d'un aquifère karstique: le Baget (Pyrénées ariégeoises) [dissertation]. Paris, Université P. et M. Curie. 221 p.Google Scholar
Fleyfel, M, Bakalowicz, M. 1980. Etude géochimique et isotopique du carbone mineral dans un aquifere karstique. 1980 Nov 17–18. Bordeaux: Colloque Société Géologique de France. 231–45.Google Scholar
Fritz, P, Reardon, EJ, Barker, EJ, Brown, M, Cherry, A, Killey, WD, McNaughton, D. 1978. The carbon isotope geochemistry of a small groundwater system in northeastern Ontario. Water Resources Research 14:1059–67.Google Scholar
Gascoyne, M, Nelson, DE. 1983. Growth mechanisms of recent speleothems from Castelguard Cave, Columbia Icefields, Alberta Canada, inferred from a comparison of Uranium-series and Carbon-14 data. Artic and Alpine Research 15:537–42.Google Scholar
Gascoyne, M. 1992. Paleoclimate determination from cave calcite deposits. Quaternary Science Reviews 11: 609–32.Google Scholar
Genty, D, Quinif, Y. 1996. Annually laminated sequences in the internal structure of some Belgian stalagmites – Importance for paleoclimatology. Journal of Sedimentary Research 66:275–88.Google Scholar
Genty, D. Baker, A. Barnes, W, Massault, M. 1996. Growth rate, grey level and luminescence of stalagmite laminae: Climate Change: The Karst Record. Proceedings of the symposium in Bergen. 1996 Aug 1–4; Norway. University of Bergen, Norway. Karst Water Institute Special Publication 2. 36–9.Google Scholar
Genty, D, Massault, M. 1997. Bomb 14C recorded in laminated speleothems: dead carbon proportion calculation. Radiocarbon 39(1):3348.Google Scholar
Genty, D, Baker, A, Barnes, W. 1997. Comparaison entre les lamines luminescentes et les lamines visibles annuelles de stalagmites. Comptes Rendus de l'Académie des Sciences de Paris 325:193200.Google Scholar
Genty, D, Vokal, B, Obelic, B, Massault, M. 1998. Bomb 14C time history recorded in two modern stalagmites – Importance for soil organic matter dynamics and bomb 14C distribution over continents. Earth and Planetary Science Letters 160:795809.CrossRefGoogle Scholar
Genty, D, Massault, M. 1999. Carbon transfer dynamics from bomb-14C and δ13C time series of a laminated stalagmite from SW-France – Modelling and comparison with other stalagmite. Geochemica et Cosmochemica Acta. Forthcoming.CrossRefGoogle Scholar
Gewelt, M. 1986. Datation 14C des concrétions de grottes belges: vitesses de croissance durant l'Holocène et implications paléoclimatiques. In: Patterson, K, Sweeting, MM, editors. Proceedings of the Anglo-French Karst Symposium (1983). Norwich: Geo. Books. p 293322.Google Scholar
Geyh, MA, Henning, GJ. 1986. Multiple dating of a long flowstone profile. Radiocarbon 28(2A):503–9.Google Scholar
Hendy, CH. 1971. The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta 35: 801–24.CrossRefGoogle Scholar
Holmgren, K, Lauritzen, SE, Possnert, G. 1994. 230Th/234U and 14C dating of a Late Pleistocene stalagmite in Lobatse II cave – Botswana. Quaternary Geochronology 13:111–9.Google Scholar
Kitagawa, H, Van der Plicht, J. 1998. Atmospheric radiocarbon calibration to 45000 yr BP. late gacial fluctuations and cosmogenic isotope production. Science 279:1187–90.Google Scholar
Lamb, HH. 1995. Climate history and the modern world. London and New York, Routledge. 432 p.Google Scholar
Lauritzen, SE, Lovlie, R, Moe, D, Ostbye, E. 1990. Paleoclimate deduced from a multidisciplinary study of a half-million-year-old stalagmite from Rana, Northern Norway. Quaternary Research 34: 306–6.CrossRefGoogle Scholar
Lauritzen, SE. 1995. High-resolution paleotemperature proxy record for the last interglaciation based on Norwegian speleothems. Quaternary Research 43:133–46.Google Scholar
Liu, T, Tan, M, Qin, X, Zhai, S, Li, T, , J, De'er, Z. 1997. Discovery of microbedding in speleothems in China and its significance in the study of Global Change. Quaternary Science (China) 2:4151.Google Scholar
Mangin, A. 1975. Contribution à l'étude des aquifères karstiques [dissertation]. Université de Dijon.Google Scholar
Mook, WG, Bommerson, JC, Staverman, WH. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22:169–76.Google Scholar
Mook, WG. 1980. Carbon 14 in hydrogeological studies. In: Fritz, P, Fontes, J-Ch, editors. Handbook of Environmental Geochemistry 1A:4974.Google Scholar
Pazdur, A, Pazdur, MF, Pawlyta, J. 1995. Paleoclimatic implications of radiocarbon dating of speleothems from the Cracow-Wielun upland, southern Poland. Radiocarbon 37(2): 103–10.Google Scholar
Railsback, LB, Brook, GA, Chen, J, Kalin, R, Fleisher, CJ. 1994. Environmental controls on the petrology of a late Holocene speleothem from Botswana woth annual layers of aragonite and calcite. Journal of Sedimentary Research A64(1):147–55.Google Scholar
Shopov, YY, Dermendjiev, V. 1990. Microzonality of luminescence of cave flowstones as a new indirect index of solar activity. Compte Rendu de l'Académie Bulgare des Sciences 43:912.Google Scholar
Stuiver, M, Kra, RS, editors. 1986. Calibration issue. Radiocarbon 28(2B):8051030.Google Scholar
Talma, AS, Vogel, JC. 1992. Late Quaternary paleotem-peratures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Reasearch 37:203–13.Google Scholar
Tan, M. Liu, T. Quin, X, De'er, Z. 1997. Microbanding of stalagmite and its significance. PAGES Report 5:67.Google Scholar
Vogel, JC. 1983. 14C variations during the Upper Pleistocene. Radiocarbon 25(2):213–8.Google Scholar
Vogel, JC, Kronfeld, J. 1997 Calibration of radiocarbon dates for the Late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39(1):2732.CrossRefGoogle Scholar