Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-08T07:53:22.187Z Has data issue: false hasContentIssue false

Bomb Radiocarbon in Tree Rings from Northern New South Wales, Australia: Implications for Dendrochronology, Atmospheric Transport, and Air-Sea Exchange of CO2

Published online by Cambridge University Press:  18 July 2016

Quan Hua*
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234, Australia.
Mike Barbetti
Affiliation:
The NWG Macintosh Centre for Quaternary Dating, Madsen Building F09, University of Sydney, New South Wales 2006, Australia.
Ugo Zoppi
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234, Australia.
David M Chapman
Affiliation:
School of Geosciences, Madsen Building F09, University of Sydney, New South Wales 2006, Australia.
Bruce Thomson
Affiliation:
School of Geosciences, Madsen Building F09, University of Sydney, New South Wales 2006, Australia.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have analyzed by radiocarbon 27 consecutive single rings, starting from AD 1952, of a preliminarily cross-dated section (DFR 021) of Pinus radiata, which grew in Armidale, northern New South Wales, Australia. The bomb 14C results suggested the possibility of 2 false rings, and, consequently, 2 misidentified rings in the preliminary count for this section. This possibility was supported by a better ring-width correlation between the revised DFR 021 count and other Pinus radiata chronologies in the study region. This indicated that bomb 14C is a useful tool to complement the standard techniques of dendrochronology in tree species where annual rings are not always clearly defined.

Type
Environmental Studies
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Broecker, WS, Peng, TH, Engh, R. 1980. Modelling the carbon system. Radiocarbon 22(3):565–98.CrossRefGoogle Scholar
Broecker, WS, Peng, TH, Östlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90:6953–70.Google Scholar
Bureau of Meteorology. 1999. Monthly rainfall data for Armidale, 1920–1997. Melbourne.Google Scholar
Cain, WF, Suess, HE. 1976. Carbon 14 in tree rings. Journal of Geophysical Research 81:3688–94.Google Scholar
Dai, K, Qian, Y, Fan, CY. 1992. Bomb-produced 14C in tree rings. Radiocarbon 34(3):753–6.Google Scholar
Druffel, ERM, Griffin, S. 1993. Large variations of surface ocean radiocarbon: evidence of circulation changes in the southwestern Pacific. Journal of Geophysical Research 98(C11):20,24959.Google Scholar
Druffel, ERM, Griffin, S. 1995. Regional variability of surface ocean radiocarbon from Southern Great Barrier Reef corals. Radiocarbon 37(2):517–24.Google Scholar
Druffel, ERM, Griffin, S. 1999. Variability of surface radiocarbon and stable isotopes in the southwestern Pacific. Journal of Geophysical Research 104(C10): 23,60713.Google Scholar
Druffel, EM, Suess, HE. 1983. On the radiocarbon record in banded corals: exchange parameters and net transport of 14CO2 between atmosphere and surface ocean. Journal of Geophysical Research 88(C2):1271–80.Google Scholar
Enting, IG. 1982. Nuclear weapons data for use in carbon cycle modelling. CSIRO Division of Atmospheric Physics Technical Paper No. 44. Melbourne: CSIRO.Google Scholar
Etheridge, DM, Steele, LP, Langenfels, RL, Francey, RJ, Barnola, JM, Morgan, VI. 1998. Historical CO2 records from the Law Dome DE08, DE08-2 and DSS ice cores. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, USA. URL: http://cdiac.esd.ornl.gov.trends/co2/lawdome.html.Google Scholar
Fink, D, Hotchkis, MAC, Hua, Q, Jacobsen, GE, Smith, AM, Zoppi, U, Child, D, Mifsud, C, van der Gaast, HA, Williams, AA, Williams, M. 2003. Forthcoming. The ANTARES AMS Facility at ANSTO. Nuclear Instruments and Methods in Physics Research B. Google Scholar
Hertelendi, E, Csongor, E. 1982. Anthropogenic 14C excess in the troposphere between 1951 and 1978 measured in tree rings. Radiochemical and Radioanalytical Letters 56(2):103–10.Google Scholar
Hesshaimer, V, Levin, I. 2000. Revision of the stratospheric bomb 14CO2 inventory. Journal of Geophysical Research 105(D9):11,64158.Google Scholar
Hua, Q, Barbetti, M. Forthcoming. Compilation of tropospheric bomb 14C data for carbon cycle modelling and age calibration purposes. Radiocarbon. Google Scholar
Hua, Q, Barbetti, M, Worbes, M, Head, J, Levchenko, VA. 1999. Review of radiocarbon data from atmospheric and tree ring samples for the period AD 1945–1997. IAWA Journal 20(3):261–83.Google Scholar
Hua, Q, Barbetti, M, Jacobsen, GE, Zoppi, U, Lawson, EM. 2000. Bomb radiocarbon in annual tree rings from Thailand and Tasmania. Nuclear Instruments and Methods in Physics Research B 172:359–65.Google Scholar
Hua, Q, Jacobsen, GE, Zoppi, U, Lawson, EM, Williams, AA, Smith, AM, McGann, MJ. 2001. Progress in radiocarbon target preparation at the ANTARES AMS Centre. Radiocarbon 43(2A):275–82.Google Scholar
Lawson, EM, Elliott, G, Fallon, J, Fink, D, Hotchkis, MAC, Hua, Q, Jacobsen, GE, Lee, P, Smith, AM, Tuniz, C, Zoppi, U. 2000. AMS at ANTARES—The first 10 years. Nuclear Instruments and Methods in Physics Research B 172:95–9.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—A unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.Google Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Munnich, M, Berdau, D, Vogel, JC, Munnich, KO. 1985. Twenty-five years of tropospheric 14C observations in Central Europe. Radiocarbon 27(1):119.Google Scholar
Linacre, E, Geerts, B. 1997. Climates and Weather Explained. London: Routledge.Google Scholar
Manning, MR, Melhuish, WH. 1994. Δ14CO2 record from Wellington. In: Trends: A compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennesse, USA. URL: http://cdiac.esd.ornl.gov.trends/co2/welling.html.Google Scholar
Manning, MR, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGrill, RC. 1990. The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1):3758.Google Scholar
Meijer, HAJ, van der Plicht, J, Gislefoss, JS, Nydal, R. 1995. Comparing long-term atmospheric 14C and 3H records near Groningen, the Netherlands with Fruholmen, Norway and Izaña, Canary Islands 14C stations. Radiocarbon 37(1):3950.Google Scholar
Muraki, Y, Korachov, G, Nishiyama, T, Naruse, Y, Murata, T, Masuda, K, Arslanov, KhA. 1998. The new Nagoya radiocarbon laboratory. Radiocarbon 40(1):177–82.Google Scholar
Nydal, R. 1968. Further investigation on the transfer of radiocarbon in nature. Journal of Geophysical Research 73(12):3617–35.Google Scholar
Nydal, R, Gislefoss, JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38(3):389406.Google Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6): 3621–42.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27(2):168–92.Google Scholar
Östlund, HG, Stuiver, M. 1980. GEOSECS Pacific Radiocarbon. Radiocarbon 22(1):2553.Google Scholar
Park, JH, Kim, JC, Cheoun, MK, Kim, IC, Youn, M, Liu, YH, Kim, ES. 2002. 14C Level at Mt Chiak and Mt Kyeryong in Korea. Radiocarbon 44(2):559–66.Google Scholar
Quay, PD, Stuiver, M. 1980. Vertical advection—Diffusion rates in the oceanic thermocline determined from 14C distributions. Radiocarbon 22(3):607–25.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):353–63.Google Scholar
Stuiver, M, Östlund, HG, McConnaughey, TA. 1981. GEOSECS Atlantic and Pacific 14C distribution. In: Bolin, B, editor. Carbon Cycle Modelling (Scope 16). New York: John Wiley & Sons. p 201–21.Google Scholar
Telegadas, K. 1971. The seasonal atmospheric distribution and inventories of excess carbon-14 from March 1955 to July 1969. US Atomic Energy Commission Report HASL-243.Google Scholar
Vogel, JC, Marais, M. 1971. Pretoria radiocarbon dates I. Radiocarbon 13(2):378–94, and regular updates.Google Scholar
Yang, X, North, R, Rommey, C. 2000. CMR Nuclear Explosion Database (revision 3). CMR Technical Report CMR-00/16. Center for Monitoring Research, Arlington, Virginia, USA. URL: http://www.pidc.org/rdss/nucex/report/explosion.pdf.Google Scholar