Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-08T02:01:42.749Z Has data issue: false hasContentIssue false

Bomb 14C Recorded in Laminated Speleothems: Calculation of Dead Carbon Proportion

Published online by Cambridge University Press:  18 July 2016

Dominique Genty
Affiliation:
Université de Paris-Sud, Laboratoire d'Hydrologie et de Géochimie Isotopique, URA 723 CNRS, bâtiment 504, F-91405 Orsay Cedex, France
Marc Massault
Affiliation:
Université de Paris-Sud, Laboratoire d'Hydrologie et de Géochimie Isotopique, URA 723 CNRS, bâtiment 504, F-91405 Orsay Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We performed radiocarbon measurements using accelerator mass spectrometry (AMS) on 6 stalagmites 3 stalactites and 7 seepage waters from four different caves in Southwest France and Belgium in order to calculate the dead carbon proportion (dcp). All the speleothems studied are modern and annually laminated, which offers the advantage of an accurate chronology, with better than one-year resolution. Coupled with the fact that very little calcite is necessary for an AMS measurement (between 1.5 and 7 yr of calcite deposit), we obtained dead carbon values within an uncertainty limit of ± 1.5%. Results show that the dead carbon proportion varies from 9.2% to 21.9% for calcite deposits and from 3.6% to 21.9% for water. In each sampling site, the dcp is homogeneous. Although the inter-site dcp varies by >11%, its average value of 15.5% ± 4.4 still lies within the uncertainty range of the accepted value of 15% ± 5 (dilution factor of 0.85 ± 0.5). We compare the average dcp of each site with the local geology, vegetation and climate. Given similar geology and temperature the highest dcp values are found under forest cover; dcp difference is up to 9%. However, the Belgian site, which is also under a forest shows a dcp very close to the dcp found under grassland sites of Southwest France, which proves that other unknown factors may play an important role in dissolution processes. Secondary calcite deposition and redissolution in the soil zone or more likely in the fracture system before reaching the cave itself could also explain the inter-site differences. The IAEA isotopic model (Pearson model adapted for open systems) is in good agreement with the measured activities.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Atkinson, T. C., 1985 Present and future directions in karst hydrogeology. Annales de la Société Géologique de Belgique 108: 293296.Google Scholar
Baker, A., Smart, P. L., Edwards, R. L. and Richards, D. A. 1993 Annual growth bandings in a cave stalagmite. Nature 364: 518520.Google Scholar
Baker, A., Barnes, W. and Smart, P. 1996 Luminescence and discharge variations in stalagmite drip waters. In Climate Change: The Karst Record . Proceedings of the symposium in Bergen, Norway, August 1–4th 1996. Bergen, Norway, University of Bergen Karst Water Institute: 3639.Google Scholar
Baker, A., Ito, E., Smart, P. L. and McEvan, R., in press, Elevated 13–C in speleothem and implications for palaeovegetation studies. Chemical Geology (Isotope Geoscience) .Google Scholar
Bard, E., Hamelin, B. and Fairbanks, R. G. 1990 U-Th ages obtained by mass spectrometry in corals from Barbados: Sea level during the past 130,000 years. Nature 346: 456458.Google Scholar
Bastin, B. and Gewelt, M. 1986 Analyse pollinique et datation 14C de concrétions stalagmitiques holocènes: Apports complémentaires des deux méthodes. Géographie Physique et Quaternaires 15(2): 185196.Google Scholar
Broecker, W. S. and Olson, E. A. 1960 Radiocarbon measurements and annual rings in cave formations. Nature 185: 9394.Google Scholar
Brook, G. A. and Nickmann, R.J. 1996 Evidence of Late Quaternary environments in Northwestern Georgia from sediments preserved in Red Spider Cave. Physical Geography 17(5): 465484.CrossRefGoogle Scholar
Destombes, J. L., Cordonnier, M., Gadat, J. Y. and Delannoy, J. J. 1997 Periodic and aperiodic forcing of water flow through sodastraw stalactites (Choranche, Vercors, France). In Union International de Spéléologie, eds., Proceedings of the 12th International Speleological Congress of Chaud-Les-Fonds, Neuchâtel, Switzerland: in press.Google Scholar
Dever, L., Durand, R., Fontes, J. C. and Vachier, P. 1982 Géochimie et teneurs isotopiques des systèmes saisonniers de dissolution de la calcite dans un sol sur craie. Geochimica et Cosmochimica Acta 46: 19471956.Google Scholar
Dörr, H. and Münnich, K.O. 1986 Annual variations of the 14C content of soil CO2 . In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 338345.Google Scholar
Dulinski, M. and Rozanski, K. 1990 Formation of 13C/12C isotope ratios in speleothems: A semi-dynamic model. Radiocarbon 32(1): 716.Google Scholar
Ek, C., Hilaire-Marcel, C. and Trudel, B. 1981 Sédimentologie et paléoclimatologie isotopique dans une grotte de Gaspésie, Québec. Géographie Physique et Quaternaire 34(2): 317328.Google Scholar
Fleyfel, M. (ms.) 1979 Etude hydrologique, géochimique et isotopique des modalités de minéralisation et de transfert du carbone dans la zone d'infiltration d'un aquifère karstique: Le Baget (Pyrénées ariégeoises). Thèse de Docteur-Ingénieur Université P. et M. Curie, Paris: 221 p.Google Scholar
Fleyfel, M. and Bakalowicz, M. 1980 Etude géochimique et isotopique du carbone mineral dans un aquifere karstique. Colloque Société Géologique de France, Bordeaux 17–18 Novembre 1980: 231245.Google Scholar
Fontes, J. C. and Gamier, J. M. 1979 Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach. Water Resources Research 15: 399413.CrossRefGoogle Scholar
Fontes, J. C. 1985 Some considerations on ground water dating using environmental isotopes. In Hydrogeology in the Service of Man, Memoirs of the 18th Congress of the International Association of Hydrologists. Cambridge, International Association of Hydrologists: 118154.Google Scholar
Fontes, J. C. 1992 Chemical and isotopic constraints on 14C dating of groundwater. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon after Four Decades . New York, Springer-Verlag: 242261.Google Scholar
Ford, D. and Williams, P. 1989 Karst Geomorphology and Hydrology . London, Chapman & Hall: 601 p.Google Scholar
Fritz, P., Reardon, E. J., Barker, E. J., Brown, M., Cherry, A., Killey, W. D. and McNaughton, D. 1978 The carbon isotope geochemistry of a small groundwater system in north-eastern Ontario. Water Resources Research 14: 10591067.Google Scholar
Gascoyne, M. 1992 Paleoclimate determination from cave calcite deposits. Quaternary Science Reviews 11: 609632.Google Scholar
Genty, D. 1993 Mise en évidence d'alternances saisonnières dans la structure interne des stalagmites. Intérêt pour la reconstitution des paléoenvironnements continentaux. Comptes Rendus de l'Académie de Sciences (Paris), ser. 2, 317: 12291236.Google Scholar
Genty, D., Baker, A., Barnes, W. and Massault, M. 1996 Growth rate, grey level and luminescence of stalagmite laminae. In Climate Change: The Karst Record . Proceedings of the symposium in Bergen, Norway, August 1–4th 1996. Bergen, Norway, University of Bergen Karst Water Institute: 3639.Google Scholar
Genty, D., Deflandre, G., Quinif, Y. and Verheyden, S., in press, Les lamines de croissance des spéléothèmes: origine et intérêt paléoclimatique. Annales de la Société Géologique de Belgique .Google Scholar
Genty, D. and Quinif, Y. 1996 Annually laminated sequences in the internal structure of some Belgian stalagmites – Importance for paleoclimatology. Journal of Sedimentary Research 66: 275288.Google Scholar
Genty, D., Quinif, Y. and Keppens, E. 1995 Les variations saisonnières des lamines de croissance mises en évidence par le dosage des isotopes stables de l'oxygène et du carbone. Spéléochronos (Faculté Polytechnique de Mons, Belgium) 6: 3234.Google Scholar
Gewelt, M. 1985 Cinetique du concrétionnement dans quelques grottes beiges: Apport des datations 14C et 230Th/234U. Annales de la Société Géologique de Belgique 108: 267273.Google Scholar
Gewelt, M. 1986 Datation 14C des concrétions de grottes beiges: Vitesses de croissance durant l'Holocène et implications paléoclimatiques. In Paterson, K. and Sweeting, M. M. New Directions in Karst: Proceedings of the Anglo-French Karst Symposium, September 1983 . Norwich, Geo Books: 293322.Google Scholar
Geyh, M. A. and Henning, G. J. 1986 Multiple dating of a long flowstone profile. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A): 503509.Google Scholar
Geyh, M. A. and Franke, H. W. 1970 Zur Wachstumsgeschwindigkeit von Stalagmiten. Atompraxis 16: 4648.Google Scholar
Goede, A. and Vogel, J. C. 1991 Trace element variation and dating of a Late Pleistocene Tasmanian speleothem. Paleogeography, Paleoclimatology, Paleoecology 88: 121131.Google Scholar
Goslar, T., Arnold, M., Bard, E., Kuc, T., Pazdur, F., Ralska-Jasiewiczowa, M., Rozanski, K., Tisnerat, N., Walanus, A., Wicik, B. and Wieckowski, K. 1995 High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377: 414417.CrossRefGoogle Scholar
Hendy, C. H. 1971 The isotopic geochemistry of speleothems–I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta 35: 801824.Google Scholar
Hobbs, S. L. and Smart, P. L. 1986 Characterization of carbonate aquifers: A conceptual base. In Union International de Spéléologie, ed., Proceedings of the 9th International Speleological Congress of Barcelona 1: 4346.Google Scholar
Holmgren, K., Lauritzen, S. E. and Possnert, G. 1994 230Th/234U and 14C dating of a Late Pleistocene stalagmite in Lobatse II cave – Botswana. Quaternary Geochronology 13: 111119.Google Scholar
Issar, A. S., Govrin, Y., Geyh, M. A., Wakshal, E. and Wolf, M. 1992 Climate changes during the Upper Holocene in Israel. Israelian Journal of Earth Science 40: 219223.Google Scholar
Krajcar-Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1986 On the initial 14C activity in karst aquifers with short mean residence time. In Stuiver, M. and Kra, R., eds., Proceedings of the 12th International 14C Conference. Radiocarbon 28(2A) 436440.Google Scholar
Krajcar-Bronić, I., Horvatinčić, N., Srdoč, D. and Obelić, B. 1992 Experimental determination of the 14C initial activity of calcareous deposits. In Long, A. and Kra, R. S., eds., Proceedings of the 14th International 14C Conference. Radiocarbon 34(3): 593601.Google Scholar
Levin, I., Bösiger, R., Bonani, G., Francey, R. J., Kromer, B., Münnich, K. O., Suter, M., Trivett, N. B. A. and Wölfli, W. 1992 Radiocarbon in atmospheric carbon dioxide and methane: Global distribution and trends. In Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon after Four Decades . New York, Springer-Verlag: 503518.Google Scholar
Levin, I., Graul, R. and Trivett, N. B. A. 1995 Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B: 2334.Google Scholar
Mangin, A. (ms.) 1975 Contribution à l'étude des aquifères karstiques. Thèse de Doctorat, Université de Dijon.Google Scholar
Mazaud, A., Laj, C., Bard, E., Arnold, M. and Truic, E. 1991 Geomagnetic field control of 14C production over the last 80 ky: Implications for the radiocarbon time-scale. Geophysical Research Letters 18: 18851888.Google Scholar
Mook, W. G. 1980 Carbon-14 in hydrogeological studies. In Fritz, P. and Fontes, J. Ch., eds., Handbook of Environmental Geochemistry 1A. Amsterdam, Elsevier Scientific Publishing Co.: 4974.Google Scholar
Mook, W. G., Bommerson, J. C. and Staverman, W. H. 1974 Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters 22: 169176.Google Scholar
Pazdur, A., Pazdur, M. F. and Pawlyta, J. 1995 Paleoclimatic implications of radiocarbon dating of Speleothems from the Cracow-Wielun Upland Southern Poland. In Cook, G. T., Harkness, D. D., Miller, B. F. and Scott, E. M., eds., Proceedings of the 15th International 14C Conference. Radiocarbon 37(2): 103110.Google Scholar
Pearson, F. J. 1965 Use of 13C/12C ratios to correct radiocarbon ages of material initially diluted by limestone. In Chatters, R., ed., Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Pullman, Washington, U.S. Atomic Energy Commission: 357366.Google Scholar
Pitty, A. F. 1966 An Approach to the Study of Karst Water . University of Hull, Ocasional Papers in Geography 5: 70 p.Google Scholar
Plummer, L. N. 1977 Defining reactions and mass transfer in part of the Floridian aquifer. Water Resource Research 13: 801812.CrossRefGoogle Scholar
Railsback, L. B., Brook, G. A., Chen, J., Kalin, R. M. and Fleisher, C. J. 1994 Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite. Journal of Sedimentary Research A64 (1): 147155.Google Scholar
Reicher, B. and Trimborn, P. 1995 Application of tracer techniques to characterize hydraulics and solute transport of the epikarst zone of a karst aquifer. In Proceedings of the International Symposium on Isotopes in Water Resource Management . Vienna, IAEA: 303305.Google Scholar
Salem, O., Visser, J. H., Dray, M. and Gonfiantini, R. 1980 Groundwater flow patterns in the western Lybian Arab Jamahiriya. In Arid-Zone Hydrology: Investigations with Isotope Techniques . Vienna, IAEA: 165179.Google Scholar
Saliege, J. F. and Fontes, J.-Ch. 1984 Essai de détermination expérimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. International Journal of Applied Radiation and Isotopes 35: 5562.Google Scholar
Schwarcz, H. P. 1986 Geochronology and isotopic geochemistry of speleothems. In Fritz, P. and Fontes, J. Ch., eds., Handbook of Environmental Geochemistry 2B . Amsterdam, Elsevier Scientific Publishing Co.: 271303.Google Scholar
Shopov, Y. Y. and Dermendjiev, V. 1990 Microzonality of luminescence of cave flowstones as a new indirect index of solar activity. Compte Rendu de l'Académie Bulgare des Sciences 43: 912.Google Scholar
Suess, H. E. and Linick, T. W. 1990 The 14C record in bristlecone pine wood of the past 8000 years based on the dendrochronology of the late C. W. Ferguson. Philosophical Transactions of the Royal Society of London A330: 403412.Google Scholar
Stuiver, M. and Polach, H. 1977 Discussion: Reporting of 14C data. Radiocarbon 19(3): 355363.Google Scholar
Talma, A. S. and Vogel, J. C. 1992 Late Quaternary paleotemperatures derived from a speleothem from Cango Caves, Cape Province, South Africa. Quaternary Reasearch 37: 203213.Google Scholar
Tamers, M. A. 1967 Radiocarbon ages of groundwater in an arid zone unconfined aquifer. In Isotope Techniques in the Hydrological Cycle . American Geophysical Union Monograph 11: 143152.Google Scholar
Thorpe, P. M., Otlet, R. L. and Sweeting, M. M. 1980 Hydrological implications from 14C profiling of UK Tufa. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 10th International 14C Conference. Radiocarbon 22(3): 897908.Google Scholar
Vogel, J. C. 1983 14C variations during the Upper Pleistocene. In Stuiver, M. and Kra, R. S., eds., Proceedings of the 11th International 14C Conference. Radiocarbon 25(2): 213218.Google Scholar
Wigley, M. L. and Kelly, P. M. 1990 Holocene climatic change, wiggles and variations in solar irradiance. Philosophical Transactions of the Royal Society of London A330: 547560.Google Scholar
Wigley, M. L. and Muller, A. B. 1981 Fractionation corrections in radiocarbon datings. Radiocarbon 23(2): 173190.Google Scholar