Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-04T19:11:39.762Z Has data issue: false hasContentIssue false

A Bibliography of Radiocarbon Dating

Published online by Cambridge University Press:  18 July 2016

Frederick Johnson*
Affiliation:
Robert S. Peabody Foundation. Andover, Massachusetts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The scope of the problems which are involved in the determination of radiocarbon dates renders complete, or detailed, classification of the published results of the research most complicated. In assembling this bibliography several such classifications were discarded before the present simplified one emerged. It was found, for example, that in a detailed classification of subject titles a large number of papers would have to be listed under several, sometimes as many as four, different headings. This complicated and lengthened the listing and also materially increased the chance of inaccurately locating a title. In such an event it would be “lost” to all but the most meticulous searcher. The reduction in the number of subject headings is open to criticism. We suspect, however, that these are answered by the simplicity of the present outline.

Type
Research Article
Copyright
Copyright © The American Journal of Science 

References

I. LISTS OF DATES

Anderson, E. C., Levi, Hilde, and Tauber, Henrik, 1953, Copenhagen natural radiocarbon measurements, I: Science, v. 118, p. 69.CrossRefGoogle ScholarPubMed
Anonymous, , 1957, The amateur scientist: Sci. Am., v. 196, no. 2 (February), p. 159174 [scintillation-counter description, with some dates, by Fred Schatzman, Highland Park, New Jersey].Google Scholar
Arnold, J. R., and Libby, W. F., 1950, Radiocarbon dates (September 1, 1950): Inst. for Nuclear Studies, Univ. of Chicago, 15 p.Google Scholar
Arnold, J. R., and Libby, W. F. 1951, Radiocarbon dates: Science, v. 113, p. 111120.CrossRefGoogle ScholarPubMed
Ballario, C., Beneventano, M., de Marco, A., Magistrelli, F., Cortesi, C., and Mantovani, T., 1955, Apparatus for Carbon-14 dating: Science, v. 121, p. 409412.CrossRefGoogle ScholarPubMed
Barendsen, G. W., Deevey, E. S., and Gralenski, L. J., 1957, Yale natural radiocarbon measurements III: Science, v. 126, p. 908919.Google Scholar
*Bella, Francesco, and Cortesi, Cesare, 1957, Attività del laboratorio dell'Università di Roma per le datazioni con il C14 : Ricerca sci., v. 27, no. 9, p. 26772690.Google Scholar
Blau, M., Deevey, E. S. Jr., and Gross, M. S., 1953, Yale natural radiocarbon measurements I. Pyramid Valley, New Zealand and its problems: Science, v. 118, p. 16.Google Scholar
Brannon, H. R. Jr., Daughtry, A. C., Perry, D., Simons, L. H., Whitaker, W. W., and Williams, Milton, 1957, Humble Oil Company radiocarbon dates I: Science, v. 125, p. 147150.Google Scholar
Brannon, H. R. Jr., Simons, L. H., Perry, D., Daughtry, A. C., and McFarlan, E. Jr., 1957, Humble Oil Company radiocarbon dates II: Science, v. 125, p. 919923.CrossRefGoogle ScholarPubMed
Broecker, W. S., and Kulp, J. L., 1957, Lamont natural radiocarbon measurements IV: Science, v. 126, p. 13241334.Google Scholar
Broecker, W. S., Kulp, J. L., and Tucek, C. S., 1956, Lamont natural radiocarbon measurements III: Science, v. 124, p. 154165.Google Scholar
Cameron, H. L., 1956, Nova Scotia historic sites: Royal Soc. Canada Trans., ser. 3, v. 50, sec. 2, p. 17.Google Scholar
Coon, C. S., and Ralph, E. K., 1955, Radiocarbon dates for Kara Kamar, Arghanistan, University of Pennsylvania II: Science, v. 122, p. 921922.CrossRefGoogle ScholarPubMed
Crane, H. R., 1956, University of Michigan radiocarbon dates I: Science, v. 124, p. 664672.Google Scholar
Crane, M. R., and Griffin, J. B., 1958, University of Michigan radiocarbon dates II: Science, v. 127, p. 10981105.Google Scholar
Crane, M. R., and Griffin, J. B. 1958, University of Michigan radiocarbon dates III: Science, v. 128, p. 11171123.Google Scholar
*Delibrias, G., and Perquis, M. T., 1958, Datages par la méthode du Carbone 14: [France] Commissariat à l'Energie Atomique, Bull. Inf. Sci. et Tech. no. 21, p. 13.Google Scholar
Douglas, D. L., 1952, Measuring low-level radioactivity: General Electric Rev., v. 55, no. 5 (September), p. 1620 [ionization-chamber description, with 2 dates].Google Scholar
Fergusson, C. J., and Rafter, T. A., 1953, New Zealand C14 age measurements—I: New Zealand Jour. Sci. and Technology, sec. B, v. 35, p. 127128.Google Scholar
Fergusson, C. J., and Rafter, T. A. 1955, New Zealand 14C age measurements—II: New Zealand Jour. Sci. and Technology, sec. B, v. 36, p. 371374.Google Scholar
Fergusson, C. J., and Rafter, T. A. 1957, New Zealand 14C age measurements—3: New Zealand Jour. Sci. and Technology, sec. B, v. 38, p. 732749.Google Scholar
Flint, R. F., and Gale, W. A., 1958, Stratigraphy and radiocarbon dates at Searles Lake, California: Am. Jour. Sci., v. 256, p. 698714.CrossRefGoogle Scholar
Godwin, Harry, Suggate, R. P., and Willis, E. H., 1958, Radiocarbon dating of the eustatic rise in ocean-level: Nature, v. 181, p. 15181519.Google Scholar
Godwin, Harry, Walker, Donald, and Willis, E. H., 1957, Radiocarbon dating and postglacial vegetational history: Scaleby Moss: Royal Soc. [London] Proc., ser. B, v. 147, p. 352366.Google Scholar
Gravenor, C. P., and Elwood, B., 1956, A radiocarbon date from Smoky Lake, Alberta: Univ. of Alberta, Research Council of Alberta, Prelim. Rept. 56-3.Google Scholar
Grayson, J. F., unpub., The postglacial history of vegetation and climate in the Labrador-Quebec region as determined by palynology: Ph.D. thesis, Univ. Michigan, Ann Arbor, 1956 [contains 5 dates from Magnolia Petroleum Co.] Google Scholar
Haring, A., de Vries, A. E., and de Vries, Hessel, 1958, Radiocarbon dating up to 70,000 years by isotopic enrichment: Science, v. 128, p. 472473.Google Scholar
Kulp, J. L., Feely, H. W., and Tryon, L. E., 1951, Lamont natural radiocarbon measurements, I: Science, v. 114, p. 565568.CrossRefGoogle ScholarPubMed
Kulp, J. L., Tryon, L. E., Eckelman, W. R., and Snell, W. A., 1952, Lamont natural radiocarbon measurements, II: Science, v. 116, p. 409414.Google Scholar
Libby, W. F., 1951, Radiocarbon dates, II: Science, v. 114, p. 291296.Google Scholar
Libby, W. F. 1952, Chicago radiocarbon dates, III: Science, v. 116, p. 673681.Google Scholar
Libby, W. F. 1952, Radiocarbon dating: Chicago, Univ. Chicago Press, vii, 124 p.Google Scholar
Libby, W. F. 1954, Chicago radiocarbon dates, IV: Science, v. 119, p. 135140.Google Scholar
Libby, W. F. 1954, Chicago radiocarbon dates V: Science, v. 120, p. 733742.Google Scholar
Libby, W. F. 1955, Radiocarbon dating, 2d ed.: Chicago, Univ. Chicago Press, ix, 175 p.Google Scholar
McCallum, K. J., 1955, Carbon-14 age determinations at the University of Saskatchewan: Royal Soc. Canada Trans., ser. 3, v. 49, sec. 4, p. 3135.Google Scholar
Münnich, K. O., 1957. Heidelberg natural radiocarbon measurements I: Science, v. 126, p. 194199.Google Scholar
Olson, E. A., and Broecker, W. S., 1959, Lamont natural radiocarbon measurements V: Am. Jour. Sci., v. 257, p. 128; repr. in Am. Jour. Sci. Radioc. Supp., v. 1, p. 1–28.Google Scholar
Orr, P. C., 1956, Radiocarbon dates from Santa Rosa Island, I: Santa Barbara Mus. Nat. History, Dept. Anthropology, Bull. 2, p. 110 [contains 2 dates by California Institute of Technology].Google Scholar
Östlund, H G., 1957, Stockholm natural radiocarbon measurements I: Science, v. 126, p. 493497.Google Scholar
*Perquis, M. T., Delibrias, G., and David, B., 1956, Mesure par comptage proportionnel en phase gazeuse de substance à très faible activité spécifique due au Carbone 14. Application aux “datages”: [France] Commissariat à l'Energie Atomique, Bull. Inf. Sci. et Tech. no. 11, p. 17.Google Scholar
Pons, Armand, and Quezel, Pierre, 1958, Premières remarques sur l'étude palynologique d'un guano fossile du Hoggar: Acad. Sci. Paris Comptes rendus hebdom., v. 246, p. 22902292 [date determined by Section d'electronique physique de Saclay].Google Scholar
Preston, R. S., Person, Elaine, and Deevey, E. S., 1955, Yale natural radiocarbon measurements II: Science, v. 122, p. 954960.Google Scholar
Pringle, R. W., Turchinetz, W., Funt, B. L., Danyluk, S. S., 1957, Radiocarbon age estimates obtained by an improved liquid scintillation technique: Science, v. 125, p. 6970.CrossRefGoogle ScholarPubMed
Ralph, E. K., 1955, University of Pennsylvania radiocarbon dates I: Science, v. 121, p. 149151.Google Scholar
Rubin, Meyer, and Alexander, Corrinne, 1958, U. S. Geological Survey radiocarbon dates IV: Science: v. 127, p. 14761487.Google Scholar
Rubin, Meyer, and Suess, H. E., 1955, U. S. Geological Survey radiocarbon dates II: Science, v. 121, p. 481488.Google Scholar
Rubin, Meyer, and Suess, H. E. 1956, U. S. Geological Survey radiocarbon dates III: Science, v. 123, p. 442448.Google Scholar
Shepard, F. P., and Moore, D. G., 1955, Central Texas coast sedimentation; characteristics of sedimentary environment, recent history, and diagenesis: Am. Assoc. Petroleum Geologists Bull., v. 39, p. 14631593 [contains several dates by Magnolia Petroleum Co.].Google Scholar
Shima, Makoto, 1956, On the geochemical study of Carbon 14. I. The Ozegehara peat: Chem. Soc. Japan Bull., v. 29, p. 443447.CrossRefGoogle Scholar
Solecki, R. S., and Rubin, Meyer, 1958, Dating of Zawi Chemi, an early village site at Shanidar, northern Iraq: Science, v. 127, p. 1446.CrossRefGoogle Scholar
Suess, H. E., 1954, U. S. Geological Survey radiocarbon dates I: Science, v. 120, p. 467473.Google Scholar
Tauber, Henrik, 1956, Copenhagen natural radiocarbon measurements II: Science, v. 124, p. 879881.Google Scholar
Tauber, Henrik, and de Vries, Hessel, 1958, Radiocarbon measurements of Würm-interstadial samples from Jutland: Eiszeit. u. Gegenwart, v. 9, p. 6971.Google Scholar
Vries, Hessel de, 1958, Radiocarbon dates for upper Eem and Würm-interstadial samples: Eiszeit. u. Gegenwart, v. 9, p. 1017.Google Scholar
Vries, Hessel de, and Barendsen, G. W., 1954, Measurements of age by the Carbon-14 technique: Nature, v. 174, p. 11381141.Google Scholar
Vries, Hessel de, Barendsen, G. W., and Waterbolk, H. T., 1958, Groningen radiocarbon dates II: Science, v. 127, p. 129137.CrossRefGoogle ScholarPubMed
Vries, Hessel de, and Waterbolk, H. T., 1958, Groningen radiocarbon dates III: Science, v. 128, p. 15501556.Google Scholar
Wise, E. N., and Shutler, Dick Jr., 1958, University of Arizona radiocarbon dates: Science, v. 127, p. 7274.Google Scholar
Zeuner, F. E., 1955, Radiocarbon dates: Univ. London Inst. Archaeology 11th Ann. Rept., p. 4350.Google Scholar
Zeuner, F. E. 1956, The radiocarbon age of Jericho: Antiquity: v. 30, p. 195197.Google Scholar

II. THE METHOD

Techniques and Geochemistry Google Scholar
Alvarez, L. W., and Cornog, R., 1939, Helium and hydrogen of mass 3: Phys. Rev., v. 56, p. 613.Google Scholar
Anderson, E. C., 1953, The production and distribution of natural radiocarbon: Ann. Rev. Nuclear Sci., v. 2, p. 6376.CrossRefGoogle Scholar
Anderson, E. C., Arnold, J. R., and Libby, W. F., 1951, Measurement of low level radiocarbon: Rev. Sci. Instruments: v. 22, p. 225230.Google Scholar
Anderson, E. C., and Levi, Hilde, 1952, Some problems in radiocarbon dating: Kgl. Danske Vidensk. Selsk. Mat.-fys. Medd., v. 27, no. 6, p. 122.Google Scholar
Anderson, E. C., and Libby, W. F., 1951, World-wide distribution of natural radiocarbon: Phys. Rev., v. 81, p. 6469.Google Scholar
Anderson, E. C., Libby, W. F., Weinhouse, S., Reid, A. F., Kirschenbaum, A. D., and Grosse, A. V., 1947, Radiocarbon from cosmic radiation: Science, v. 105, p. 576.Google Scholar
Anderson, E. C., Libby, W. F., Weinhouse, S., Reid, A. F., Kirschenbaum, A. D., and Grosse, A. V. 1947, Natural radiocarbon from cosmic radiation: Phys. Rev., v. 72, p. 931936.Google Scholar
Arnold, J. R., 1954, Scintillation counting of natural radiocarbon: I. The counting method: Science, v. 119, p. 155157.Google Scholar
Arnold, J. R., and Anderson, E. C., 1957, The distribution of Carbon-14 in nature: Tellus, v. 9, p. 2832.Google Scholar
Arnold, J. R., and Libby, W. F., 1949, Age determinations by radiocarbon content: Checks with samples of known age: Science, v. 110, p. 678680.Google Scholar
Arrhenius, G., Kjellberg, G., and Libby, W. F., 1951, Age determination of Pacific chalk ooze by radiocarbon and titanium content: Tellus, v. 3, p. 222229.Google Scholar
Arrhenius, G., Kjellberg, G., and Libby, W. F. 1954, The measurement of low specific activity C-14 by liquid scintillation Audric, B. N., and Long, J. V. P., 1953, The background and C-14 detection efficiency of a liquid scintillation counter: Jour. Sci. Instruments, v. 30, p. 467469.Google Scholar
Arrhenius, G., Kjellberg, G., and Libby, W. F. 1954, Use of dissolved acetylene in liquid scintillation counters for the measurement of Carbon-14 of low specific activity: Nature, v. 173, p. 992993.Google Scholar
counting: Oxford Radioisotope Conf., 1954, v. 2, p. 134.Google Scholar
Ballario, C., Beneventano, M., Brunelli, B., de Marco, A., Magistrelli, F., Cortesi, C., and Mantovani, T., 1956, Sulla realizzazione di apparecchiature per la datazione di resti di organismi a mezzo del radiocarbonio: Internat. Quaternary Assoc. Cong., 4th, Rome-Pisa 1953, Actes, v. 2, p. 855857.Google Scholar
*Ballario, C., Beneventano, M., Cortesi, C., and Magistrelli, F., 1955, Sulla richerche per la realizzazione del metodo de datazione con il radiocarbonio: Cong. di Geol. Nucleare, 1st, C. N. E. N., Roma, Atti. Google Scholar
Ballario, C., Beneventano, M., de Marco, A., Magistrelli, F., Cortesi, C., and Mantovani, T., 1955, Apparatus for Carbon-14 dating: Science, v. 121, p. 409412.Google Scholar
Barendsen, G. W., 1955, Ouderdomsbepaling met radioactieve koolstof: Thesis, Univ. Groningen, September 20, 1955, 88 p.Google Scholar
Barendsen, G. W. 1957, Radiocarbon dating with liquid CO2 as diluent in a scintillation solution: Rev. Sci. Instruments, v. 28, p. 430432.Google Scholar
Barker, Harold, 1953, Radiocarbon dating: Large-scale preparation of acetylene from organic material: Nature, v. 172, p. 631632.Google Scholar
Bartlett, H. H., 1951, Radiocarbon datability of peat, marl, caliche, and archaeological materials: Science, v. 114, p. 5556.Google Scholar
Bigeleisen, Jacob, 1949, The relative reaction velocities of isotopic molecules: Jour. Chem. Physics, v. 17, p. 675678.CrossRefGoogle Scholar
Brannon, H. R., Daughtry, A. C., Perry, D., Simons, L. H., and Williams, Milton, 1956, Routine radiocarbon dating by carbon dioxide proportional counting: Presented at Radiocarbon Dating Conf., Andover, Massachusetts, October 1–4, 1956 [processed].Google Scholar
Brannon, H. R., Daughtry, A. C., Perry, D., Whitaker, W. W., and Williams, Milton, 1956, The contemporary assay of marine shells: Presented at Radiocarbon Conference, Andover, Massachusetts, October 1–4, 1956 [processed].Google Scholar
Brannon, H. R., Daughtry, A. C., Perry, D., Whitaker, W. W., and Williams, Milton 1956, The contemporary assay of woods: Presented at Radiocarbon Conference, Andover, Massachusetts, October 1–4, 1956 [processed].Google Scholar
Brannon, H. R., Daughtry, A. C., Perry, D., Whitaker, W. W., and Williams, Milton 1957, Radiocarbon evidence on the dilution of atmospheric and oceanic carbon by carbon from fossil fuels: Am. Geophys. Union Trans., v. 38, p. 643650.Google Scholar
Brannon, H. R., Taggart, M. S., and Williams, Milton, 1955, Proportional counting of carbon dioxide for radiocarbon dating: Rev. Sci. Instruments, v. 26, p. 269273.Google Scholar
Brinkman, R., Münnich, K. O., and Vogel, J. C., 1959, C14-Altersbestimmung von Grundwasser: Naturwissenschaften, v. 46, p. 1012.Google Scholar
*Broecker, W. S., Ewing, Maurice, Heezen, B. C., Gerard, R., and Kulp, J. L., 1958, The significance of variations of light isotope abundances in oceanographic studies: p. 118–134, in Cosmological and geological implications of isotope ratio variations: Nat. Acad. Sci.-Nat. Research Council Pub. 572; Comm. on Nuclear Sci., Subcomm. on Nuclear Geophysics, Nuclear Sci. Ser., Rept. 23, vii. 187 p.Google Scholar
Broecker, W. S., Kulp, J. L., and Tucek, C. S., 1956, Lament natural radiocarbon measurements III: Science, v. 124, p. 154165.Google Scholar
*Broecker, W. S., Olson, E. A., and Bird, Junius, in press, Radiocarbon measurements on samples of known age: Nature.Google Scholar
*Broecker, W. S., Tucek, C. S., and Olson, E. A., in press, Radiocarbon analysis of oceanic CO2 : Internat. Jour. Applied Radiation and Isotopes.Google Scholar
*Broecker, W. S., and Walton, Alan, in press, The geochemistry of C14 in the fresh water systems: Geochim. et Cosmochim. Acta, v. 16.Google Scholar
Brown, S. C., and Miller, W. W., 1947, Carbon dioxide filled Geiger-Müller counters: Rev. Sci. Instruments, v. 18, p. 496499.Google Scholar
Brownell, G. L., and Lockhart, H. S., 1952, CO2 ion chamber techniques for radiocarbon measurements: Nucleonics, v. 10, no. 2 (February), p. 2632.Google Scholar
Brownell, G. L., and Lockhart, H. S. n.d., CO2 counter technique for C14 measurement: Massachusetts Inst. Technology Lab. Nuclear Sci. and Eng. Tech. Rept. 30 [processed].Google Scholar
Brownell, G. L., and Lockhart, H. S. n.d., CO2 ionization chamber techniques for C14 measurement: Massachusetts Inst. Technology Lab. Nuclear Sci. and Eng. Tech. Rept. 56 [processed; Office of Naval Research Task Contract N5ori-07806, NR-026-001], 22 p.Google Scholar
Buchanan, D. L., Nakao, A., and Edwards, G., 1953, Carbon isotope effects in biological systems: Science, v. 117, p. 541545.Google Scholar
Burke, W. H. Jr., and Meinschein, W. G., 1955, C14 dating with a methane proportional counter: Rev. Sci. Instruments, v. 26, p. 11371140.Google Scholar
*Buttlar, H., and Libby, W. F., 1955, Natural distribution of cosmic ray produced tritium: Jour. Inorg. Nuclear Chemistry, v. 1, p. 75.Google Scholar
Calvin, Melvin, Heidelberger, Charles, Reid, J. C., Tolbert, B. M., and Yankwich, P. E., 1949, Isotopic carbon: techniques in its measurement and chemical manipulation: New York, Wiley; London, Chapman & Hall, xiii, 376 p.Google Scholar
Caswell, R. S., Brabant, J. M., and Schwebel, A., 1954, Disintegration rate of Carbon-14: U. S. Nat. Bur. Standards Jour. Research, v. 53, p. 2728.Google Scholar
Clayton, G. D., Arnold, J. R., and Patty, F. A., 1955, Determination of sources of particulate atmospheric carbon: Science, v. 122, p. 751753.Google Scholar
Coon, C. S., and Ralph, E. K., 1955, Radiocarbon dates for Kara Kamar, Afghanistan, University of Pennsylvania II: Science, v. 122, p. 921922.Google Scholar
Craig, Harmon, 1953, The geochemistry of the stable carbon isotopes: Geochim. et Cosmochim. Acta, v. 3, p. 5392.Google Scholar
Craig, Harmon 1954, Carbon 13 in plants and the relationships between Carbon 13 and Carbon 14 variations in nature: Jour. Geology, v. 62, p. 115149.Google Scholar
Craig, Harmon 1954, Geochemical implications of the isotopic composition of carbon in ancient rocks: Geochim. et Cosmochim. Acta, v. 6, p. 186.Google Scholar
Craig, Harmon 1954, Carbon-13 variations in Sequoia rings and the atmosphere: Science, v. 119, p. 141143.Google Scholar
Craig, Harmon 1957, The natural distribution of radiocarbon and the exchange time of carbon dioxide between atmosphere and sea: Tellus, v. 9, p. 117.Google Scholar
Craig, Harmon 1957, Isotopic standards for carbon and oxygen and correction factors for mass-speetrometric analysis of carbon dioxide: Geochim. et Cosmochim. Acta, v. 12, p. 133149.Google Scholar
Craig, Harmon, and Boato, Giovanni, 1955, Isotopes: Ann Rev. Phys. Chemistry, v. 6, p. 403432.Google Scholar
Crane, H. R., 1955, Antiquity of the Sandia Culture: Carbon-14 measurements: Science, v. 122, p. 689690.Google Scholar
Crane, H. R. 1956, University of Michigan radiocarbon dates I: Science, v. 124, p. 664672.Google Scholar
Crane, H. R., and Griffin, J. B., 1958, University of Michigan radiocarbon dates II: Science, v. 127, p. 10981105.Google Scholar
Crane, H. R., and Griffin, J. B. 1958, University of Michigan radiocarbon dates III: Science, v. 128, p. 11171123.Google Scholar
Crane, H. R., and McDaniel, E. W., 1952, An automatic counter for age determination by the C14 method: Science, v. 116, p. 342347.Google Scholar
Crathorn, A. R., 1953, Use of an acetylene-filled counter for natural radiocarbon: Nature, v. 172, p. 632633.Google Scholar
*Crathorn, A. R., and Loosemore, W. R., 1954, Gas counting of natural radiocarbon: Oxford Radioisotope Conf., 1954, v. 2, p. 123131 [London, Butterworth's Scientific Pubs.].Google Scholar
Crowe, C., 1958, Carbon-14 activity during the last 5000 years: Nature, v. 182, p. 470471.Google Scholar
Deevey, E. S., 1958, Final report on radiocarbon dating to the Office of Naval Research, Contract Nonr 609 (05): Yale Univ. Geochronometric Lab. [processed], 17 p., pl. Google Scholar
Deevey, E. S., Gross, M. S., Hutchinson, G. E., and Kraybill, H. L., 1954, The natural C14 contents of materials from hard-water lakes: [U.S.] Nat. Acad. Sci. Proc., v. 40, p. 285288.Google Scholar
Diethorn, Ward, 1956, A methane proportional counter system for natural radiocarbon measurements: Carnegie Inst. Technology, U. S. Atomic Energy Comm. Rept. NYO-6628, xi, 146 p. [processed].Google Scholar
Douglas, D. L., 1951, Progress report. Carbon 14: measurement of low level radioactivity: California Inst. Technology Gates and Crellin Labs. Chemistry Rept. [processed; to Atomic Energy Commission], 21 p.Google Scholar
Douglas, D. L. 1952, Measuring low-level radioactivity: General Electric Rev., v. 55, no. 5 (September), p. 1620.Google Scholar
Eidinoff, M. L., 1950, Measurement of radiocarbon as carbon dioxide inside Geiger-Müller counters: Anal. Chemistry, v. 22, p. 529534.Google Scholar
Elsasser, W., Ney, E. P., and Winckler, J. R., 1956, Cosmic ray intensity and geomagnetism: Nature, v. 178, p. 12261227.Google Scholar
Engelkemeir, A. G., and Libby, W. H. Inghram, M. G., and Libby, W. F., 1949, The half-life of radiocarbon (C14): Phys. Rev., v. 75, p. 18251833.Google Scholar
Engelkemeir, A. G., and Libby, W. F., 1950, End and wall corrections for absolute beta-counting in gas counters: Rev. Sci. Instruments, v. 21, p. 550.Google Scholar
Faltings, V., 1952 Die Messung naturlicher C-14 Aktivitäten im Proportionalzähler: Naturwissenschaften, v. 39, p. 378379.Google Scholar
Fergusson, G. J., 1953, Activity measurement of samples for radiocarbon dating: New Zealand Jour. Sci. and Technology, see. B, v. 35, p. 90108.Google Scholar
Fergusson, G. J. 1954, The use of carbon dioxide filled proportional counters for radiocarbon dating: Dominion Phys. Lab. Dept. Sci. Indus. Research Rept. no. R.225 [processed], 17 p., 7 pls. Google Scholar
Fergusson, G. J. 1955, Radiocarbon dating system: Nucleonics, v. 13, no. 1 (January), p. 1823.Google Scholar
Fergusson, G. J. in press, Reduction of atmospheric radiocarbon concentration by fossil fuel carbon dioxide and the mean life of carbon dioxide in the atmosphere: Royal Soc. Australia Proc. Google Scholar
Fergusson, G. J., and McCallum, G. J., 1957, The cosmic ray flare of 23 February, 1956, and its effect on the New Zealand radiocarbon dating equipment: New Zealand Jour. Sci. and Technology sec. B, v. 38, p. 577587.Google Scholar
Fergusson, G. J., and Rafter, T. A., 1955, New Zealand 14C age measurements—II: New Zealand Jour. Sci. and Technology, sec. B, v. 36, p. 371374.Google Scholar
Fergusson, G. J., and Rafter, T. A. 1957, New Zealand 14C age measurements—3: New Zealand Jour. Sci. and Technology, sec. B, v. 38, p. 732749.Google Scholar
Fonselius, Stig, Koroleff, Folke, and Warme, K-E., 1956, Carbon dioxide variations in the atmosphere: Tellus, v. 8, p. 176183.Google Scholar
Franke, H. W., 1951, Altersbestimmung von Kalzitkonkretionen mit radiaktivem Kohlenstoff: Naturwissenchaften, v. 38, p. 527528.Google Scholar
Freedman, A. J., and Anderson, E. C., 1952, Low-level counting techniques: Nucleonics, v. 10, no. 8 (August), p. 57.Google Scholar
Funt, B. L., Sobering, S., Pringle, R. W., and Turchinetz, W., 1955, Scintillation techniques for the detection of natural radiocarbon: Nature, v. 175, p. 10421043.Google Scholar
Gleason, G. I., Taylor, J. D., and Tabern, D. L., 1951, Absolute beta counting at defined geometrics: Nucleonics, v. 8, no. 5 (May), p. 1221.Google Scholar
Goldberg, Leo, 1956, The abundance of atmospheric carbon dioxide and its isotopes, in Beer, Arthur, ed., Vistas in astronomy: London, Pergamon Press, v. 2, p. 855863.Google Scholar
Grosse, A. V., Johnston, W. M., Wolfgang, R. L., and Libby, W. F., 1951, Tritium in nature: Science v. 113, p. 12.Google Scholar
Grosse, A. V., and Libby, W. F., 1947, Cosmic radiation and natural radioactivity of living matter: Science, v. 106, p. 88.Google Scholar
Haring, A., de Vries, A. E., and de Vries, Hessel, 1958, Radiocarbon dating up to 70,000 years by isotopic enrichment: Science, v. 128, p. 472473.Google Scholar
Hawkins, R. C., Hunter, R. F., and Mann, W. B., 1949, On the efficiency of gas counters filled with carbon dioxide and carbon disulphide: Canadian Jour. Research, sec. B, v. 27, p. 555564.Google Scholar
Hawkins, R. C., Hunter, R. F., Mann, W. B., and Stevens, W. H., 1949, The half-life of C-14: Canadian Jour. Research, sec. B, v. 27, p. 545554.Google Scholar
Haxel, O., 1957, Geologische und archäologische Datierungen mit C14 : Naturwissenschaften, v. 44, p. 163169.Google Scholar
Hayes, F. N., Anderson, E. C., and Arnold, J. R., 1956, Liquid scintillation counting of natural radiocarbon: United Nations Pub. 1956.IX.1, Internat. Conf. on the Peaceful Uses of Atomic Energy, 1st, Geneva 1955, v. 14, p. 188192.Google Scholar
Hayes, F. N., Williams, D. L., and Rogers, B., 1953, Liquid scintillation counting of natural C-14: Phys. Rev., v. 92, p. 512513.Google Scholar
Houtermans, F. G., and Oeschger, H., 1955, Proportionalzählrohr zur Messung schwacher Aktivitäten weicher β-Strahlung: Helvetica Phys. Acta, v. 28, p. 464466.Google Scholar
Houtermans, F. G., and Oeschger, H. 1958, Proportionalzählrohr zur Messung schwacher Aktivitäten weicher β-Strahlung: Helvetica Phys. Acta, v. 31, p. 117126.Google Scholar
Hutchinson, G. E., 1949, A note on two aspects of the geochemistry of carbon: Am. Jour. Sci., v. 247, p. 2732.Google Scholar
Jones, W. M., 1949, A determination of the half-life of Carbon 14: Phys. Rev., v. 76, p. 885889.Google Scholar
Kaufman, Sheldon, and Libby, W. F., 1954, The natural distribution of tritium: Phys. Rev., v. 93, p. 13371344.Google Scholar
Kohman, T. P., and Saito, Nobofusa, 1954, Radioactivity in geology and cosmology: Carnegie Inst. Technology Dept. Chemistry Rept. no. NYO-3627 [processed; to U. S. Atomic Energy Comm., Contract no. AT (30-1)-844], 156 p.Google Scholar
Korff, S. A., and Hamermesh, B., 1946, The energy distribution and number of cosmic-ray neutrons in the free atmosphere: Phys. Rev., v. 69, p. 155159.Google Scholar
Kouts, H. J., and Yuan, L. C. L., 1952, The production rate of cosmic-ray neutrons and C-14: Phys. Rev., v. 86, p. 128129.Google Scholar
Kulp, J. L., 1954, Low-level counting, key to advances in radiocarbon dating: Nucleonics, v. 12, no. 12 (December), p. 1921.Google Scholar
Kulp, J. L., Tryon, L. E., and Feely, H. W., 1952, Techniques of natural Carbon-14 determination: Am. Geophys. Union Trails., v. 33, p. 183192.Google Scholar
Kulp, J. L., and Volchok, H. L., 1953, Constancy of cosmic-ray flux over the past 30,000 years: Phys. Rev., v. 90, p. 713714.Google Scholar
Ladenburg, R., 1952, The absorption rate of cosmic-ray neutrons producing C-14 in the atmosphere: Phys. Rev., v. 86, p. 128.Google Scholar
Levi, Hilde, 1952, Radioaktivt Kulstof i Naturen of C-14 datering: Fysisk Tidsskr., no. 3–4, p. 6582.Google Scholar
Libby, W. F., 1934, Radioactivity of neodymium and samorium: Phys. Rev., v. 46, p. 196204.Google Scholar
Libby, W. F. 1946, Atmospheric helium three and radiocarbon from cosmic radiation: Phys. Rev., v. 69, p. 671672.Google Scholar
Libby, W. F. 1947, Measurement of radioactive tracers: particularly C14, S35, T, and other longer-lived low-energy activities: Anal. Chemistry, v. 19, p. 26.Google Scholar
Libby, W. F. 1955, Radiocarbon dating, 2d ed.: Chicago, Univ. Chicago Press, ix, 175 p.Google Scholar
Libby, W. F., Anderson, E. C., and Arnold, J. R., 1949, Age determination by radiocarbon content: World-wide assay of natural radiocarbon: Science, v. 109, p. 227228.Google Scholar
Matson, F. R., 1955, Charcoal concentration from early sites for radiocarbon dating: Am. Antiquity, v. 21, p. 162169.Google Scholar
May, I., 1955, Isolation of organic carbon from bones for C-14 dating: Science, v. 121, p. 508.Google Scholar
McCallum, G. J., 1955, Evaluation of the accuracy of the New Zealand radiocarbon dating results: New Zealand Jour. Sci. and Technology, sec. B, v. 37, p. 370381.Google Scholar
McCallum, K. J., 1955, Carbon-14 age determinations at the University of Saskatchewan: Royal Soc. Canada Trans., ser. 3, v. 49, sec. 4, p. 3135.Google Scholar
McDaniel, E. W., and Crane, H. R., 1957, Measurements of the mobilities of negative ions in oxygen and in mixtures of oxygen with the noble gases, hydrogen, nitrogen and carbon dioxide: Rev. Sci. Instruments, v. 28, p. 684689.Google Scholar
Miller, W. W., Ballentine, R., Bernstein, W., Friedman, L., Nier, A. O., and Evans, R. D., 1950, The half-life of carbon fourteen and a comparison of gas phase counter methods:: Phys. Rev., v. 77, p. 714715.Google Scholar
Milojčić, Vladimir, 1957, Zur Anwendbarkeit der C14-Datierung in der Vorgeschichtsforschung: Germania, v. 35, p. 102110.Google Scholar
Mohler, F. L., 1955, Reference samples of isotopic abundance: Science, v. 122, p. 334.Google Scholar
Mościcki, W., 1953, On the use of CO2 + CS2 filled G. M. counters for age determination: Acta Phys. Polonica, v. 12, p. 238240.Google Scholar
Mościcki, W. 1958, On the use of G.M. counters filled with a mixture of CO2 + CS2 for the measurement of the activity of natural carbon: Acta Phys. Polonica, v. 17, p. 311343.Google Scholar
Münnich, K. O., 1957, Messungen des C14-Gehaltes von hartem Grundwasser: Naturwissenschaften, v. 44, p. 3233.Google Scholar
Münnich, K. O. 1957, Messung Natürlich Radiokohlenstoffs mit einem CO2-Proportional-Zählrohr. Einige Anwendungen der Methode: Ph.D. dissertation, Univ. Heidelberg [processed].Google Scholar
Münnich, K. O. 1958, Erfahrungen mit der C14-Datierung verschiedener Arten von Sedimenten: Geobot. Inst. Rübel, Zürich, Veröffentl., no. 34, p. 109117.Google Scholar
Münnich, K. O., Östlund, H. G., and de Vries, Hessel, 1958, Carbon-14 activity during the past 5,000 years: Nature, v. 182, p. 14321433.Google Scholar
Münnich, K. O., and Vogel, J. C., 1958, Durch Atomexplosion erzeugter Radiokohlenstoff in der Atmosphäre: Naturwissenschaften, v. 45, p. 327329.Google Scholar
Olson, E. A., 1958, Problem of humic-acid contamination in radiocarbon dating [abs.]: Geol. Soc. America Bull., v. 69, p. 1625.Google Scholar
Olsson, Ingrid, 1957, A C14 dating station using the CO2 proportional counting method: Arkiv f. Fysik, v. 13, no. 3, p. 3760.Google Scholar
Östlund, H. G., 1957, Carbon dioxide proportional counting for natural radiocarbon measurements: Arkiv f. Kemi, v. 12, no. 6, p. 6978.Google Scholar
Östlund, G., Gejvall, N.-G., and Lundqvist, G., 1957, Äldersbestämning med hjälp av kol-14: Ymer, v. 76 (1956), p. 220236.Google Scholar
Patterson, R. L., and Blifford, I. H., 1956, Anomalous Carbon-14 content of carbon dioxide from sewer gas: Science, v. 124, p. 1252.Google Scholar
Patterson, R. L., and Blifford, I. H. 1957, Atmospheric Carbon-14: Science, v. 126, p. 26.Google Scholar
Plass, G. N., 1956, The carbon dioxide theory of climatic change: Tellus, v. 8, p. 140154.Google Scholar
Pringle, R. W., Turchinetz, W., and Funt, B. L., 1955, Liquid scintillation techniques for radiocarbon dating: Rev. Sci. Instruments, v. 26, p. 859865.Google Scholar
Pringle, R. W., Turchinetz, W., Funt, B. L., and Danyluk, S. S., 1957, Radiocarbon age estimates obtained by an improved liquid scintillation technique: Science, v. 125, p. 6970.Google Scholar
Raeth, C. H., Sevold, B. J., and Pederson, C. N., 1951, A multiple-anode anticoincidence ring counter: Rev. Sci. Instruments, v. 22, p. 461463.Google Scholar
Rafter, T. A., 1953, The preparation of carbon for C14 age measurements: New Zealand Jour. Sci. and Technology, sec. B, v. 35, p. 6489.Google Scholar
Rafter, T. A. 1955, Carbon dioxide as a substitute for solid carbon in 14C age measurements: New Zealand Jour. Sci. and Technology, sec. B, v. 36, p. 363370.Google Scholar
Rafter, T. A. 1955, 14C variations in nature and the effect on radiocarbon dating: New Zealand Jour. Sci. and Technology, sec. B, v. 37, p. 2038.Google Scholar
Rafter, T. A., and Fergusson, G. J., 1957, The atom bomb effect. Recent increase in the 14C content of the atmosphere, biosphere, and surface waters of the oceans: New Zealand Jour. Sci. and Technology, sec. B, v. 38, p. 871883.Google Scholar
Ralph, E. K., 1955, University of Pennsylvania radiocarbon dates I: Science, v. 121, p. 149151.Google Scholar
Reinharz, M., Rohringer, G., and Broda, E., 1954, Comparative sensitivities of different procedures for the estimation of radiocarbon: Acta Phys. Austriaca, v. 8, p. 285288.Google Scholar
Reinharz, M., and Vanderhaeghe, G., 1954, Application of the capillary tube method to the determination of radiocarbon: Nuova Cimento, v. 12, p. 243249.Google Scholar
Revelle, Roger, and Suess, H. E., 1957, Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades: Tellus, v. 9, p. 1827.Google Scholar
Ruben, S., and Kamen, M. D., 1940, Radioactive carbon of long half-life: Phys. Rev., v. 57, p. 549.Google Scholar
Rubin, Meyer, and Alexander, Corrinne, 1958, U. S. Geological Survey radiocarbon dates IV: Science, v. 127, p. 14761487.Google Scholar
Shima, Makoto, 1956, On the geochemical study of Carbon 14: I. The Ozegahara peat: Chem. Soc. Japan Bull., v. 29, p. 443447.Google Scholar
Smith, P. V., 1952, The occurrence of hydrocarbons in recent sediments from the Gulf of Mexico: Science, v. 116, p. 437439.Google Scholar
Solecki, R. S., and Rubin, Meyer, 1958, Dating of Zawi Chemi, an early village site at Shanidar, northern Iraq: Science, v. 127, p. 1446.Google Scholar
Stranks, D. R., and Harris, G. M., 1953, Predicted isotopic enrichment effects in some isotopic exchange equilibria involving Carbon-14: Am. Chem. Soc. Jour., v. 75, p. 20152016.Google Scholar
Suess, H. E., 1953, Natural radiocarbon and the rate of exchange of carbon dioxide between the atmosphere and the sea: p. 5256 in Aldrich, L. T., ed., Proceedings of the conference on nuclear processes in geological settings, Williams Bay, Wisconsin: Nat. Research Council, Comm. on Nuclear Sci., v. 1, 82 p.Google Scholar
Suess, H. E. 1954, Natural radiocarbon measurements by acetylene counting: Science, v. 120, p. 57.Google Scholar
Suess, H. E. 1955, Radiocarbon concentration in modern wood: Science, v. 122, p. 415417.Google Scholar
*Vogel, J. C., in press, Über den Isotopengehalt des Kohlenstoffs in Süsswasserkalkablagerungen: Geochim. et Cosmochim. Acta. Google Scholar
Vries, Hessel de, 1956, The contribution of neutrons to the background of counters used for 14C age measurements: Nuclear Physics, v. 1, p. 477479.Google Scholar
Vries, Hessel de 1956, Cosmic radiation during the solar flare of February 23d and its effect on 14C age measurements: Physica, v. 22, p. 357.Google Scholar
Vries, Hessel de 1956, Purification of CO2 for use in a proportional counter for 14C age measurements: Appl. Sci. Research, sec. B, v. 5, p. 387400.Google Scholar
Vries, Hessel de 1957, Further analysis of the neutron component of the background of counters used for 14C age measurements: Nuclear Physics, v. 3, p. 6568.Google Scholar
Vries, Hessel de 1957, The removal of radon from CO2 for use in 14C age measurements: Appl. Sci. Research, sec. B, v. 6, p. 461470.Google Scholar
Vries, Hessel de 1958, Atomic bomb effect: Variation of radiocarbon in plants, shells, and snails in the past 4 years: Science, v. 128, p. 250251.Google Scholar
Vries, Hessel de 1958, Radiocarbon dates for upper Eem and Würm-interstadial samples: Eiszeit. u. Gegenwart, v. 9, p. 1017.Google Scholar
Vries, Hessel de 1958, Variation in concentration of radiocarbon with time and location on Earth: Koninkl. Nederlandse Akad. Wetensch. Proc., ser. B, v. 61, no. 2, p. 19.Google Scholar
Vries, Hessel de, and Barendsen, G. W., 1952, A new technique for the measurement of age by radiocarbon: Physica, v. 18, p. 652.Google Scholar
Vries, Hessel de, and Barendsen, G. W. 1953, Radiocarbon dating by a proportional counter filled with carbon dioxide: Physica, v. 19, p. 9871003.Google Scholar
Vries, Hessel de, and Barendsen, G. W. 1954, Measurements of age by the Carbon-14 technique: Nature, v. 174, p. 11381141.Google Scholar
Vries, Hessel, de Barendsen, G. W., and Waterbolk, H. T., 1958, Groningen radiocarbon dates II: Science, v. 127, p. 129137.Google Scholar
Wickman, F. E., 1952, Variations in the relative abundance of carbon isotopes in plants: Geochim. et Cosmochim. Acta, v. 2, p. 243254.Google Scholar
Wickman, F. E., Blix, R., and von Ubisch, H., 1951, On the variations in the relative abundance of the carbon isotopes in carbonate materials: Jour. Geology, v. 59, p. 142150.Google Scholar
Wickman, F. E., and von Ubisch, H., 1951, Two notes on the istotopic constitution of carbon in minerals: Geochim. et Cosmochim. Acta, v. 1, p. 119122.Google Scholar
Zeuner, F. E., 1955, Radiocarbon dates: Univ. London Inst. Archaeology 11th Ann. Rept., p. 4350.Google Scholar

III. THE METHOD. Explanatory Essays

Barker, Harold, 1958, Radio Carbon dating: its scope and limitations: Antiquity, v. 32, p. 253263.Google Scholar
*Briggs, L. J., and Weaver, K. F., 1958, How old is it?: Nat. Geog. Mag. (August), p. 235255.Google Scholar
Broecker, W. S., and Kulp, J. L., 1956, The radiocarbon method of age determination: Am. Antiquity, v. 22, p. 111.Google Scholar
Crane, H. R., 1951, Dating of relics by radiocarbon analysis: Nucleonics, v. 9, no. 6 (June), p. 1623.Google Scholar
Crane, H. R. 1957, Carbon-14 dating: p. 5456 in Taylor, W. W., ed., The identification of non-artificial archaeological materials: Nat. Acad. Sci.-Nat. Research Council Pub. 565, Div. Anthropology Psychology, Comm. on Archaeological Identification, 64 p.Google Scholar
Deevey, E. S., 1951, Utilizzazione del radiocarbonio nella determinazione delle età geologiche: Riv. Sci. Preist., v. 6, p. 115125.Google Scholar
Deevey, E. S. 1952, Radiocarbon dating: Sci. Am., v. 186, no. 2 (February), p. 2428.Google Scholar
Deevey, E. S. 1957, Problems of radiocarbon dating: Yale Sci. Mag., v. 31, no. 7 (April), p. 4252.Google Scholar
Douglas, D. L., 1952, Measuring low-level radioactivity: General Electric Rev., v. 55, no. 5 (September), p. 1620.Google Scholar
Flint, R. F., 1951, Dating late-Pleistocene events by means of radiocarbon: Nature, v. 167, p. 833836.Google Scholar
Gross, Hugo, 1952, Die Radiokarbon-Methode, ihre Ergebnisse und Bedeutung für die spätquartäre Geologie, Paläontologie und Vorgeschichte: Eiszeit. u. Gegenwart, v. 2, p. 6892.Google Scholar
Gross, Hugo 1957, Die Fortschritte der Radiokarbon-Methode 1952–1956: Eiszeit. u. Gegenwart, v. 8, p. 141180.Google Scholar
Johnson, Frederick, 1956, Radiocarbon dating lists and their use: Am. Antiquity, v. 21, p. 312313.Google Scholar
Kulp, J. L., 1953, Carbon-14 measurements on geological samples: Atomics, v. 4, unpaginated reprint.Google Scholar
Kulp, J. L. 1955, Geological chronometry by radioactive methods: Advances in Geophysics, v. 2, p. 179217.Google Scholar
Kulp, J. L., and Tryon, L. E., 1952, Extension of the Carbon 14 age method: Rev. Sci. Instruments, v. 23, p. 296297.Google Scholar
Labeyrie, J., and Delibrias, G., 1955, Détermination de l'âge par le dosage du Carbone 14: Soc. française de Phys., Proc.-verb. Rés. Commun., 1955; Jour. Phys. & Radium, ser. 8, v. 16, supp., p. 91S93S.Google Scholar
Levi, Hilde, 1954, Kulstoff-14 Datering: Vor Viden, April, p. 500.Google Scholar
Libby, W. F., 1954, Radiocarbon dating: Endeavour, v. 13, p. 516.Google Scholar
Libby, W. F. 1956, Radiocarbon dating: Am. Scientist, v. 44, p. 98112.Google Scholar
Linné, Sigvald, 1950, Radiocarbon dates: Ethnos, v. 15, p. 206213.Google Scholar
Roberts, F. H. H., 1952, The Carbon-14 method of age determination: Smithsonian Rept., 1951, p. 335350.Google Scholar
Suess, H. E., 1956, Grundlagen und Ergebnisse der Radiokohlenstoff-Datierung: Angew. Chemie, v. 68, p. 540546.Google Scholar
*Tauber, Henrik, 1952, Datering med Radioaktivt Kulstof: Ingeniören, v. 61, p. 497.Google Scholar
*Tauber, Henrik 1956, Tadsfaestelse af Grauballemanden ved Kulstof-14 Maaling: Kuml, 160.Google Scholar
*Tauber, Henrik 1958, Difficulties in the application of C-14 results in archaeology: Archaeologia Austriaca, v. 24, p. 5969.Google Scholar
*Vaufrey, R., 1951, Centres d'application de la methode du radio-carbone: L'Anthropologie, v. 55, p. 573.Google Scholar
Zeuner, F. E., 1951, Archaeological dating by radioactive carbon: Sci. Progress, v. 39, p. 225238.Google Scholar

IV. INTERPRETATION. Selected Geologic Titles

Antevs, Ernst, 1955, Varve and radiocarbon chronologies appraised by pollen data: Jour. Geology, v. 63, p. 495499.Google Scholar
Antevs, Ernst 1957, Geological tests of the varve and radiocarbon chronologies: Jour. Geology, v. 65, p. 129148.Google Scholar
Averdieck, F. R., and Münnich, K. O., 1957, Palynologische Betrachtungen zur Siedlungsgeschichte im Norden Hamburgs unter Zuhilfenahme neuerer Datierungsmethoden: Hammaburg, v. 5, no. 11, p. 922, 4 pls. Google Scholar
Broecker, W. S., and Orr, P. C., 1958, Radiocarbon chronology of Lake Lahontan and Lake Bonneville: Geol. Soc., America Bull., v. 69, p. 10091032.Google Scholar
Broecker, W. S., Turekian, K. K., and Heezen, B. C., 1958, The relation of deep sea sedimentation rates to variations in climate: Am. Jour. Sci., v. 256, p. 503517.Google Scholar
Deevey, E. S., 1958, Radiocarbon-dated pollen sequences in eastern North America: Geobot. Inst. Rübel, Zürich, Veröffentl., no. 34, p. 3037.Google Scholar
Deevey, E. S., and Potzger, J. E., 1951, Peat samples for radiocarbon analysis: problems in pollen statistics: Am. Jour. Sci., v. 249, p. 473511.Google Scholar
Dreimanis, Aleksis, 1957, Stratigraphy of the Wisconsin glacial stage along the northwestern shore of Lake Erie: Science, v. 126, p. 166168.Google Scholar
Dreimanis, Aleksis, and Terasmae, Jaan, 1958, Stratigraphy of Wisconsin glacial deposits of Toronto area, Ontario: Geol. Assoc. Canada Proc., v. 10, p. 119135.Google Scholar
Elson, J. A., 1957, Lake Agassiz and the Mankato-Valders problem: Science, v. 126, p. 9991002.Google Scholar
Emiliani, Cesare, 1955, Pleistocene temperatures: Jour. Geology, v. 63, p. 538578.Google Scholar
Emiliani, Cesare 1956, Note on absolute chronology of human evolution: Science, v. 123, p. 924926.Google Scholar
Emiliani, Cesare 1956, On paleotemperatures of Pacific bottom waters: Science, v. 123, p. 460461.Google Scholar
Emiliani, Cesare 1957, Temperature and age analysis of deep-sea cores: Science, v. 125, p. 383387.Google Scholar
Emiliani, Cesare 1958, Paleotemperature analysis of core 280 and Pleistocene correlations: Jour. Geology, v. 66, p. 264275.Google Scholar
Ericson, D. B., Broecker, W. S., Kulp, J. L., and Wollin, Goesta, 1956, Late Pleistocene climates and deep-sea sediments: Science, v. 124, p. 385389.Google Scholar
Ericson, D. B., Ewing, Maurice, Heezen, B. C., and Wollin, Goesta, 1955, Sediment deposition in deep Atlantic: Geol. Soc. America Spec. Paper 63, p. 205219.Google Scholar
Ericson, D. B., and Wollin, Goesta, 1956, Correlation of six cores from the equatorial Atlantic and the Caribbean: Deep-Sea Research, v. 3, p. 104125.Google Scholar
Ericson, D. B., and Wollin, Goesta 1956, Micropaleontological and isotopic determinations of Pleistocene climates: Micropaleontology, v. 2, p. 257270.Google Scholar
*Ewing, Maurice, Ericson, D. B., and Heezen, B. C., 1958, Sediments and topography of the Gulf of Mexico, in Weeks, L. W., ed., Habitat of oil: pub. by Am. Assoc. Petroleum Geologists.Google Scholar
Fairbridge, R. W., 1958, Dating the latest movements of the Quaternary sea level: New York Acad. Sci. Trans., ser. 2, v. 20, p. 471482.Google Scholar
Firbas, Franz, Müller, Hellmut, and Münnich, K. O., 1955, Das wahrscheinliche Alter der spàteiszeitlichen “Bölling”-Klimaschwankung: Naturwissenschaften, v. 42, p. 409.Google Scholar
Flint, R. F., 1953, Probable Wisconsin substages and late-Wisconsin events in northeastern United States and southeastern Canada: Geol. Soc. America Bull., v. 64, p. 897919.Google Scholar
Flint, R. F. 1955, Rates of advance and retreat of the margin of the late-Wisconsin ice sheet: Am. Jour. Sci., v. 253, p. 249255.Google Scholar
Flint, R. F. 1956, New radiocarbon dates and late-Pleistocene stratigraphy: Am. Jour. Sci., v. 254, p. 265287.Google Scholar
Flint, R. F., and Deevey, E. S., 1951, Radiocarbon dating of late-Pleistocene events: Am. Jour. Sci., v. 249, p. 257300.Google Scholar
Flint, R. F., and Gale, W. A., 1958, Stratigraphy and radiocarbon dates at Searles Lake, California: Am. Jour. Sci., v. 256, p. 689714.Google Scholar
Flint, R. F., and Rubin, Meyer, 1955, Radiocarbon dates of pre-Mankato events in eastern and central North America: Science, v. 121, p. 649658.Google Scholar
Garner, D. M., 1958, A radiocarbon profile in the Tasman Sea: Nature, v. 182, p. 466468.Google Scholar
Gill, E. D., 1955, Radiocarbon dates for Australian archaeological and geological samples: Australian Jour. Sci., v. 18, p. 4952.Google Scholar
Gill, E. D. 1956, Radiocarbon dating of late Quaternary shorelines in Australia: Quaternaria, v. 3, p. 133138.Google Scholar
Godwin, Harry, 1951, Comments on radiocarbon dating for samples from the British Isles: Am. Jour. Sci., v. 249, p. 301307.Google Scholar
Godwin, Harry, Suggate, R. P., and Willis, E. H., 1958, Radiocarbon dating of the eustatic rise in ocean-level: Nature, v. 181, p. 15181519.Google Scholar
Godwin, Harry, Walker, Donald, and Willis, E. H., 1957, Radiocarbon dating and postglacial vegetational history: Scaleby Moss: Royal Soc. [London] Proc., ser. B, v, 147, p. 352366.Google Scholar
Goldthwait, R. P., 1958, Wisconsin age forests in western Ohio. I. Age and glacial events: Ohio Jour. Sci., v. 58, p. 209219.Google Scholar
*Gravenor, C. P., and Elwood, B., 1956, A radiocarbon date from Smoky Lake, Alberta: Univ. of Alberta, Research Council of Alberta, Prelim. Rept. 56-3.Google Scholar
Griffin, J. B., 1956, The reliability of radiocarbon dates for late glacial and recent times in central and eastern North America: Univ. Utah Anthropol. Papers, no. 26, p. 1034.Google Scholar
Gross, Hugo, 1958, Die bisherigen Ergebnisse von C14-Messungen und paläontologischen Untersuchungen für die Gliederung und Chronologie des Jungpleistozäns in Mitteleuropa und den Nachbargebieten: Eiszeit. u. Gegenwart, v. 9, p. 155187.Google Scholar
Haxel, O., 1957, Geologische und archäologische Datierungen mit C14 : Naturwissenschaften, v. 44, p. 163169.Google Scholar
Horberg, Leland, 1955, Radiocarbon dates and Pleistocene chronological problems in the Mississippi Valley region: Jour. Geology, v. 63, p. 278286.Google Scholar
Hunt, C. B., 1956, A skeptic's view of radiocarbon dates: Univ. Utah Anthropol. Papers, no. 26, p. 3546.Google Scholar
Iversen, Johannes, 1953, Radiocarbon dating of the Alleröd period: Science, v. 118, p. 911.Google Scholar
Judson, Sheldon, and Murray, R. C., 1956, Modern hydrocarbons in two Wisconsin lakes: Am. Assoc. Petroleum Geologists Bull., v. 40, p. 747750.Google Scholar
Karlstrom, T. N. V., 1956, The problem of the Cochrane in late Pleistocene chronology: U. S. Geol. Survey Bull. 1021-J, p. 303331, pl. 31.Google Scholar
Karlstrom, T. N. V. 1957, Tentative correlation of Alaskan glacial sequences, 1956: Science, v. 125, p. 7374.Google Scholar
Leighton, M. M., 1957, The Cary-Mankato-Valders problem: Jour. Geology, v. 65, p. 108111.Google Scholar
Leighton, M. M., and Wright, H. E. Jr., 1957, Radiocarbon dates of Mankato drift in Minnesota: Science, v. 125, p. 10371039.Google Scholar
Leroi-Gourhan, A., 1956, Analyse pollinique et Carbone 14: Soc. préhist. française Bull., v. 53, p. 291301.Google Scholar
*Lorch, W., 1952, Die Neudatierung des Europschen Quartärs durch die Radiokarbonmethode: Aufschluss, v. 3, no. 2, p. 19: no. 4, p. 56.Google Scholar
Lundqvist, G., 1957, C14-Analyser i Svensk Kvartärgeologi 1955–57: Sveriges geol. undersökning, ser. C, no. 557; Ärsb. 51, no. 8, 25 p. [English summary, p. 22–24].Google Scholar
Martin, P. S., 1958, Pleistocene ecology and biogeography of North America: p. 375420, in Hubbs, C. L., ed., Zoogeography: Am. Assoc. Adv. Sci. Symp., v. 51, x, 510 p.Google Scholar
Overbeck, F., Münnich, K. O., Aletsee, L., and Averdieck, F. R., 1957, Das Alter des “Grenzhorizonts” norddeutscher Hochmoore nach Radiocarbon-Datierungen: Flora, v. 145, p. 3771.Google Scholar
Rigg, G. B., and Gould, H. R., 1957, Age of Glacier Peak eruption and chronology of post-glacial peat deposits in Washington and surrounding areas: Am. Jour. Sci., v. 255, p. 341363.Google Scholar
Ruhe, R. V., Rubin, Meyer, and Scholtes, W. H., 1957, Late Pleistocene radiocarbon chronology in Iowa: Am. Jour. Sci., v. 255, p. 671689.Google Scholar
Schwarzbach, Martin, and Münnich, K. O., 1956, Zur Bestimmung des Absoluten Alters der Grábrók-Vulkane (West-Island): Naturwissenschaften, v. 43, p. 177.Google Scholar
Shepard, F. P., and Suess, H. E., 1956, Rate of postglacial rise of sea level: Science, v. 123, p. 10821083.Google Scholar
Straaten, L. M. J. U. van, 1954, Radiocarbon datings and changes of sea level at Velzen (Netherlands): Geol. Mijnbouw, new ser., v. 16, p. 247253.Google Scholar
Suess, H. E., 1955, Absolute chronology of the last glaciation: Science, v. 123, p. 355357.Google Scholar
Tauber, Henrik, and de Vries, Hessel, 1958, Radiocarbon measurements of Würm-interstadial samples from Jutland: Eiszeit. u. Gegenwart, v. 9, p. 6971.Google Scholar
Te Punga, M. T., 1953, Radiocarbon dating of a Rangitikei river terrace: New Zealand Jour. Sci. and Technology, sec. B, v. 35, p. 4548.Google Scholar
Thorarinsson, Sigurdur, 1954, The Tephra-fall from Hekla on March 29th, 1947: v. 2, no. 3 in series “The Eruption of Hekla 1947–1948”: Reykjavik, Societas Scientiarum Islandica, 68 p., 14 pls. Google Scholar
Thorarinsson, Sigurdur 1955, Nakudungslögin vid Hunaflos i ljosi nyrra aldursakvardana. The Nucella shoreline at Hunafloi in the light of tephrochronological and radiocarbon datings: Mus. Nat. History Reykjavik Misc. Paper 12; repr. from Náttúrufraedingurinn, v. 25, p. 172186 [English summary, p. 185–186].Google Scholar
Troels-Smith, J., Neolithic period in Switzerland and Denmark: Science, v. 124, p. 876879.Google Scholar
Vries, Hessel de, 1958, Radiocarbon dates for upper Eem and Würm-interstadial samples: Eiszeit. u. Gegenwart, v. 9, p. 1017.Google Scholar
Worthington, L. V., 1954, A preliminary note on the time scale on North Atlantic circulation: Deep-Sea Research, v. 1, p. 244251.Google Scholar
Wright, H. E., 1955, Valders drift in Minnesota: Jour. Geology, v. 63, p. 403411.Google Scholar
Wright, H. E. 1957, The Late-Glacial chronology of Europe—a discussion: Am. Jour. Sci., v. 255, p. 447460.Google Scholar
Wright, H. E., and Rubin, Meyer, 1956, Radiocarbon dates of Mankato drift in Minnesota: Science, v. 124, p. 625626.Google Scholar
Zeist, W. van, n.d., Some radio-carbon dates from the raised bog near Emmen (Netherlands): Palaeohistoria, v. 4, p. 113118, pl. 30.Google Scholar
Zumberge, J. H., and Potzger, J. E., 1956, Late Wisconsin chronology of the Lake Michigan basin correlated with pollen studies: Geol. Soc. America Bull., v. 67, p. 271288, pl. 1.Google Scholar

V. INTERPRETATION. Selected Archaeologic Titles

Braidwood, R. J., 1957, Jericho and its setting in Near Eastern history: Antiquity, v. 31, p. 7381.Google Scholar
Braidwood, R. J. 1958, Near Eastern prehistory: Science, v. 127, p. 14191430.Google Scholar
*Byers, D. S., in press, Radiocarbon dates from the Bull Brook Site: Am. Antiquity, v. 24.Google Scholar
Cressman, L. S., 1951, Western prehistory in the light of Carbon 14 dating: Southwestern Jour. Anthropology, v. 7, p. 289313.Google Scholar
Drucker, P., Heizer, R. F., and Squier, R. J., 1957, Radiocarbon dates from La Venta, Tabasco: Science, v. 126, p. 7273.Google Scholar
Forbis, R. G., 1956, Early man and fossil bison: Science, v. 123, p. 327328.Google Scholar
Fowler, M. L., 1959, Modoc Rock Shelter: an early Archaic site in southern Illinois: Am. Antiquity, v. 24, p. 257270.Google Scholar
Gill, E. D., 1955, Radiocarbon dates for Australian archaeological and geological samples: Australian Jour. Sci., v. 18, p. 4952.Google Scholar
Gill, E. D. Aboriginal midden sites in western Victoria dated by radiocarbon analysis: Mankind, v. 5, no. 2, p. 5155.Google Scholar
Griffin, J. B., 1956, The reliability of radiocarbon dates for late glacial and recent times in central and eastern North America: Univ. Utah Anthropol. Papers, no. 26, p. 1034.Google Scholar
Haxel, O., 1957, Geologische und archäeologische Datierungen mil C14 : Naturwissenschaften, v. 44, p. 163169.Google Scholar
Heizer, R. F., and Grosscup, G. L., 1958, Archaeological radiocarbon dates from California and Nevada: California Univ. Archaeol. Survey Rept. 44, pt. 1, i, 31 p. [processed].Google Scholar
Jennings, J. D., 1957, Danger Cave: Soc. Am. Archaeology Mem. 14, xii, 328 p. Also pub. as: Univ. Utah Anthropol. Papers, no. 27, xii, 328 p. Google Scholar
Johnson, Frederick, ed., 1951, Radiocarbon dating: Soc. Am. Archaeology Mem. 8. Also pub. as: Am. Antiquity, v. 17, no. 1, pt. 2, 65 p.Google Scholar
Kenyon, K. M., 1956, Jericho and its setting in Near Eastern history: Antiquity, v. 30, p. 184195.Google Scholar
Levi, Hilde, and Tauber, Henrik, 1955, Datierung der Pfahlbausiedlung Egolswila mit Hilfe der Kohlenstoff-14-Methode: Das Pfahlbauproblem in Monographien zur Urund Frühgeschichte der Schweiz, v. 11, p. 113115.Google Scholar
Linné, Sigvald, 1956, Radiocarbon dates in Teotihuacan: Ethnos, 1956, no. 3–4, p. 180193.Google Scholar
Mason, R. J., 1958, Late Pleistocene geochronology and the Paleo-Indian penetration into the Lower Michigan peninsula: Univ. Michigan Mus. Anthropology, Anthropol. Papers, no. 11, 48 p., 9 pls. Google Scholar
Milojčić, Vladimir, 1957, Zur Anwendbarkeit der C14-Datierung in der Vorgeschichtsforschung: Germania, v. 35, p. 102110.Google Scholar
Orr, P. C., 1956, Radiocarbon dates from Santa Rosa Island, I: Santa Barbara Mus. Nat. History, Dept. Anthropology, Bull. 2, p. 110.Google Scholar
Pittioni, Richard, 1957, Der Beitrag der Radiokarbon-Methode zur absoluten Datierung urzeitlicher Quellen: Forschung. Fortschr., v. 31, p. 357364.Google Scholar
Quimby, G. I., 1958, Fluted points and geochronology of the Lake Michigan basin: Am. Antiquity, v. 23, p. 247254.Google Scholar
Rouse, Irving, Cruxent, J. M., and Goggin, J. M., 1958, Absolute chronology in the Caribbean area: Internat. Cong. Americanists, 32nd, Copenhagen 1956, Proc., p. 508515.Google Scholar
Schwabedissen, Hermann, and Münnich, K. O., 1958, Zur Anwendung der C 14-Datierung und anderer naturwissenschaftlicher Hilfsmittel in der Ur- und Frühgeschichtsforschung: Germania, v. 36, p. 133149.Google Scholar
Solecki, R. S., and Rubin, Meyer, 1958, Dating of Zawi Chemi, an early village site at Shanidar, northern Iraq: Science, v. 127, p. 1446.Google Scholar
Wauchope, Robert, 1954, Implications of radiocarbon dates from Middle and South America: Tulane Univ. Middle Am. Research Rec., v. 2, no. 2, p. 1939.Google Scholar
Willey, G. R., 1955, The prehistoric civilizations of nuclear America: Am. Anthropologist, v. 57, p. 571593.Google Scholar
Williams, Stephen, 1957, The Island 35 mastodon: its bearing on the age of Archaic cultures in the east: Am. Antiquity, v. 22, p. 359372.Google Scholar

VI. BIBLIOGRAPHIES AND REPORTS ON CONFERENCES

Godwin, Harry, 1954, Carbon-14 dating symposium in Copenhagen, September 1–4: Nature, v. 174, p. 868.Google Scholar
Johnson, Frederick, Arnold, J. R., and Flint, R. F., 1957, Radiocarbon dating: Science, v. 125, p. 240242.Google Scholar
Levi, Hilde, 1955, Bibliography of radiocarbon dating: Quaternaria, v. 2, p. 257263.Google Scholar
Levi, Hilde 1955, Radiocarbon dating conference in Cambridge: Nature, v. 176, p. 727728.Google Scholar
Levi, Hilde 1957, Bibliography of radiocarbon dating: Quaternaria, v. 4, p. 205210.Google Scholar
McNutt, C. H., and Wheeler, R. P., 1959, Bibliography of primary sources for radiocarbon dates: Am. Antiquity, v. 24, p. 323324.Google Scholar