Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T09:51:46.288Z Has data issue: false hasContentIssue false

Assessment of the Contamination by 14C Airborne Releases in the Vicinity of the Ignalina Nuclear Power Plant

Published online by Cambridge University Press:  22 July 2019

Algirdas Pabedinskas*
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Evaldas Maceika
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Justina Šapolaitė
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Žilvinas Ežerinskis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Laurynas Juodis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Laurynas Butkus
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Laurynas Bučinskas
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Vidmantas Remeikis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
*
*Corresponding author. Email: [email protected].

Abstract

A radiocarbon (14C) activity analysis in the tree rings around Ignalina nuclear power plant (INPP) has been carried out with the aim to test the hypothesis to use 14C tree-ring analysis data as a tool for the reconstruction of gaseous releases from NPP to the environment. The INPP has been in decommissioning state since the end of 2009. Tree-ring samples for 14C analysis were collected 7 yr after final power unit shutdown from the INPP vicinity. The samples from 5 sampling locations were collected, prepared and measured using the Single Stage Accelerator Mass Spectrometer (SSAMS). Data analysis represents observable Ignalina NPP influence by 14C increase up to 15 pMC (percent modern carbon) in tree rings. Good correlations of the 14C concentrations and wind direction were obtained. The main purpose of this article was to match 14C measurement data along with the atmospheric dispersion modeling of emissions in order to retrospectively characterize the emission source.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Briggs, GA. 1973. Diffusion estimation for small emissions. Preliminary report. U.S. Department of Energy.CrossRefGoogle Scholar
Donahue, D, Linick, T, Jull, A. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measuments. Radiocarbon 32:135142.CrossRefGoogle Scholar
Ežerinskis, Ž, Šapolaitė, J, Pabedinskas, A, Juodis, L, Garbaras, A, Maceika, E, Druteikienė, R, Lukauskas, D, Remeikis, V. 2018. Annual variations of 14C concentration in the tree rings in the vicinity of Ignalina nuclear power plant. Radiocarbon 60:12271236.CrossRefGoogle Scholar
Gaiko, VB, Korablev, NA, Solovev, EN, Trosheva, TI, Shamov, VP, Umanets, MP, Shcherbina, VG. 1985. Discharge of 14C by nuclear power stations with RBMK-1000 reactors. Soviet Atomic Energy 59:703705.CrossRefGoogle Scholar
Gifford, FA. 1960. Atmospheric dispersion calculations using the generalized Gaussian plume model. Nuclear Safety:5659.Google Scholar
IAEA. 2001. Generic models for use in assessing the impact of discharges of radioacive substances to the environment. Safety Reports Series 19.Google Scholar
Janovics, R, Kern, Z, Güttler, D, Wacker, L, Barnabás, I, Molnár, M. 2017. Radiocarbon impact on a nearby tree of a light-water VVER-type nuclear power plant, Paks, Hungary. Radiocarbon 55:826832.CrossRefGoogle Scholar
Kunz, C. 1985. Carbon-14 discharge at three light-water reactors. Health Physics 49:2535.CrossRefGoogle ScholarPubMed
LAND 42. 2007. Description of the procedure for issuing permits for radionuclide discharges to the environment from nuclear facilities, restrictions and regulations. Ministry of Environment, Republic of Lithuania.Google Scholar
Mažeika, J, Petrošius, R, Pukienė, R. 2008. Carbon-14 in tree rings and other terrestrial samples in the vicinity of Ignalina Nuclear Power Plant, Lithuania. Journal of Environmental Radioactivity 99:238247.CrossRefGoogle ScholarPubMed
Motiejūnas, S, Nedveckaitė, T, Filistovič, V, Mažeika, J, Morkeliūnas, L, Maceika, E. 1999. Assessment of environment impact due to radio- active effluents from Ignalina NPP. Environmental and Chemical Physics:818.Google Scholar
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52:13581370.CrossRefGoogle Scholar
Povinec, P, Šivo, A, Ješkovský, M, Svetlik, I, Richtáriková, M, Kaizer, J. 2015. Radiocarbon in the atmosphere of the Žlkovce monitoring station of the Bohunice NPP: 25 Years of continuous monthly measurements. Radiocarbon 57:355362.CrossRefGoogle Scholar
Povinec, P, Šivo, A, Šimon, J, Holý, K, Chudý, M, Richtáriková, M, Morávek, J. 2008. Impact of the Bohunice Nuclear Power Plant on atmospheric radiocarbon. Applied Radiation and Isotopes 66:16861690.CrossRefGoogle ScholarPubMed
Remeikis, V, Juodis, L, Plukis, A, Vyčinas, L, Rožkov, A, Jasiulionis, R. 2012. Indirect assessment of 135Cs activity in the ventilation system of the Ignalina NPP RBMK-1500 reactor. Nuclear Engineering and Design 242:420424.CrossRefGoogle Scholar
Roussel-Debet, S, Gontier, G, Siclet, F, Fournier, M. 2006. Distribution of carbon 14 in the terrestrial environment close to French nuclear power plants. Journal of Environmental Radioactivity 87:246259.CrossRefGoogle ScholarPubMed
Stenström, K, Erlandsson, B, Mattsson, S, Thornberg, C, Hellborg, R, Kiisk, M, Persson, P, Skog, G. 2000. 14C emission from Swedish nuclear power plants and its Eeffect on the 14C levels in the environment:144.Google Scholar
Stenström, K, Thornberg, C, Erlandsson, B, Hellborg, R, Mattsson, S, Perssoni, P. 1998. 14C levels in the vicinity of two Swedish nuclear power plants and two “clean-air” sites in southernmost Sweden. Radiocarbon 40:433438.CrossRefGoogle Scholar
Van der Stricht, S, Janssens, A. 2001. Radioactive effluents from nuclear power stations and nuclear fuel reprocessing plants in the European Union. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Stuiver, M. 1983. International agreements and the use of the new oxalic acid standard. Radiocarbon 25:793795.CrossRefGoogle Scholar
Stuiver, M, Polach, H. 1977. Discussion reporting of 14C data. Radiocarbon 19:355363.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. American Association for the Advancement of Science 122:415417.CrossRefGoogle Scholar
Svetlik, I, Fejgl, M, Turek, K, Michalek, V, Tomaskova, L. 2012. 14C studies in the vicinity of the Czech NPPs. Journal of Radioanalytical and Nuclear Chemistry 292:689695.CrossRefGoogle Scholar
Turnbull, JC, Keller, ED, Norris, MW, Wiltshire, RM. 2017. Atmospheric monitoring of carbon capture and storage leakage using radiocarbon. International Journal of Greenhouse Gas Control 56:93101.CrossRefGoogle Scholar
U1DP0 EIAR. 2007. INPP Unit 1 Decommissioning Project for Defuelling Phase Environmental Impact Assessment Report.Google Scholar
VATESI. 2009. Nuclear energy in Lithuania: Nuclear safety. Inspectorate of Nuclear Power Safety, Lithuania.Google Scholar
Veres, M, Hertelendi, E, Uchrin, G, Csaba, E, Barnabás, I, Ormai, P, Volent, G, Futó, I. 1995. Concentration of radiocarbon and its chemical forms in gaseous effluents, environmental air, nuclear waste and primary water of a pressurized water reactor power plant in Hungary. Radiocarbon 37:497504.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research 268:931934.CrossRefGoogle Scholar
Xu, S, Cook, GT, Cresswell, AJ, Dunbar, E, Freeman, SPHT, Hastie, H, Hou, X, Jacobsson, P, Naysmith, P, Sanderson, DCW, Tripney, BG, Yamaguchi, K. 2016. 14C levels in the vicinity of the Fukushima Dai-ichi Nuclear Power Plant prior to the 2011 accident. Journal of Environmental Radioactivity 157:9096.CrossRefGoogle Scholar
Yim, M-S, Caron, F. 2006. Life cycle and management of carbon-14 from nuclear power generation. Progress in Nuclear Energy 48:236.CrossRefGoogle Scholar