Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T10:50:18.917Z Has data issue: false hasContentIssue false

Assessing the Radiocarbon Freshwater Reservoir Effect for a Northwest-European River System (the Schelde Basin, Belgium)

Published online by Cambridge University Press:  24 January 2018

Anton Ervynck*
Affiliation:
Flanders Heritage Agency, Herman Teirlinck building, Havenlaan 88 box 5, 1000 Brussels, Belgium
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000, Brussels, Belgium
Wim Van Neer
Affiliation:
Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium and University of Leuven, Laboratory of Biodiversity and Evolutionary Genomics, Ch. Debériotstraat 32, 3000 Leuven, Belgium
*
*Corresponding author. Email: [email protected].

Abstract

The freshwater reservoir effect (FRE) for the Schelde basin (Belgium) is assessed for the Roman, Medieval and early Post-medieval periods by comparing historical and archaeological dates from individual archaeological deposits with radiocarbon dates on the remains of freshwater fish and terrestrial mammals from those same deposits. This is the first time such an assessment has been attempted for the Schelde basin. The FRE offsets prove to be substantial for the historical periods considered. They also differ markedly between fish species and between size classes of a single species. These observations have implications for the evaluation of radiocarbon dates obtained on archaeological remains of humans (and animals) with a substantial amount of freshwater fish into their diet. The data obtained in this study suggest that it will not be easy to correct for any FRE.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, MB, Stafford, TW. 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45:300311.CrossRefGoogle Scholar
Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17(4):431451.Google Scholar
Arslanov, KA, Svezehentsev, YS. 1993. An improved method for radiocarbon dating of fossil bones. Radiocarbon 35(3):397–392.Google Scholar
Ascough, PL, Cook, GT, Church, MJ, Dugmore, AJ, McGovern, TH, Dunbar, E, Einarsson, Á, Friðriksson, A, Gestsdóttir, H. 2007. Reservoirs and radiocarbon: 14C dating problems in Mývatnssveit, Northern Iceland. Radiocarbon 49(2):947961.CrossRefGoogle Scholar
Bayens, W, van Eck, B, Lambert, C, Wollast, R, Goeyens, L. 1998. General description of the Scheldt estuary. Hydrobiologia 366:114.Google Scholar
Beck, C. 2004. Pêche et étangs ducaux en Bourgogne aux XIVe et XVe siècles : l’exemple du bailliage de la Montagne . In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998. Lille: CD-ROM. (no page numbers).Google Scholar
Beeckman, D, Van Hecke, C, editors. 2017. In de Cop op de Merckt. Archeologisch onderzoek van een huishouden uit 16de-eeuws Dendermonde. Gent: Provinciebestuur Oost-Vlaanderen.Google Scholar
Berthier, K. 2004. La gestion des étangs de l’abbaye de Cîteaux aux XIVe et XVe siècles . In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998. Lille: CD-ROM (no page numbers).Google Scholar
Boaretto, E, Thorling, L, Sveinbjörnsdóttir, Á, Yechieli, Y, Heinemeier, J. 1998. Study of the effect of fossil organic carbon on 14C in groundwater from Hvinningdal, Denmark. Radiocarbon 40(2):915920.Google Scholar
Borremans, M. 2015. Hydrogeologie. In: Borremans M, editor. Geologie van Vlaanderen. Gent: Academia Press. p 410479.Google Scholar
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flow nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the bishops Baldwin I and Radbot II from Noyon-Tournai. Radiocarbon 56(2):603617.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, Van den Brande, T, Van Strydonck, M. inpress. AGE: a new graphitisation apparatus for the 14C-dating laboratory. Bulletin van het Koninklijk Instituut voor het Kunstpatrimonium 35.Google Scholar
Boudin, M, Van Strydonck, M, Crombé, P, De Clercq, W, van Dierendonck, RM, Jongepier, H, Ervynck, A, Lentacker, A. 2010. Fish reservoir effect on charred food residue 14C dates: are stable isotope analyses the solution? Radiocarbon 52(2-3):697705.CrossRefGoogle Scholar
Boudin, M, Van Strydonck, M, Van den Brande, T, Synal, HA, Wacker, L. 2015. RICH - a new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Breine, JJ, Maes, J, Quataert, P, Van den Bergh, E, Simoens, I, Van Thuyne, G, Belpaire, C. 2007. A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium). Hydrobiologia 575:141159.CrossRefGoogle Scholar
Breine, J, Quataert, P, Stevens, M, Ollevier, F, Volckaert, FA, Van den Bergh, E, Maes, J. 2010. A zone-specific fish-based biotic index as a management tool for the Zeeschelde estuary (Belgium). Marine Pollution Bulletin 60:10991112.Google Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.Google Scholar
Bronk Ramsey, C. 2005. OxCal Program v3.10. http://c14.arch.ox.ac.uk/oxcal3/oxcal.htm. Accessed 28 July 2017.Google Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, REM. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.Google Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.Google Scholar
Butman, DE, Wilson, HF, Barnes, RT, Xenopoulos, MA, Raymond, PA. 2015. Increased mobilization of aged carbon to rivers by human disturbance. Nature Geoscience 8:112116.Google Scholar
Culleton, BJ. 2006. Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern county, California. Journal of Archaeological Science 33:13311339.Google Scholar
Deforce, K. 2014. Middle Holocene vegetation evolution and woodland exploitation in the Lower Scheldt valley. PhD thesis. Ghent. Presented 25 September 2014.Google Scholar
De Groote, K, Moens, J, Cooremans, B, Deforce, K, Ervynck, A, Lentacker, A. inpress. L’atelier d’un artisan arbalétrier entre 1489 et 1498 à Alost (Belgique). In: Henigfeld Y, Husi P, Ravoire F, editors. Actes du XIe congrès de la Société d’Archéologie Médiévale, Moderne et Contemporaine de Bayeux. L’objet au Moyen Âge et à l’époque moderne: fabriquer, échanger, consommer et recycler. Caen: Presse universitaire de Caen CRAHAM.Google Scholar
DeNiro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806809.Google Scholar
Drucker, D, Valentin, F, Thevenet, C, Mordant, D, Cottiaux, R, Delsate, D, Van Neer, W. 2016. Aquatic resources in human diet in the Late Mesolithic in Northern France and Luxembourg: insights from carbon, nitrogen and sulphur isotope ratios. Archaeological and Anthropological Sciences doi: 10.1007/s12520-016-0356-6.CrossRefGoogle Scholar
Duncker, G. 1960. Die Fische der Nordmark. Hamburg: Kommissionsverlag Cram, de Gruyter u. Co.Google Scholar
Ervynck, A. 1997. Following the rule? Fish and meat consumption in monastic communities in Flanders (Belgium). In: De Boe G, Verhaeghe F, editors. Environment and Subsistence in Medieval Europe. Papers of the ‘Medieval Europe Brugge 1997.’ Conference Volume 9. Brussels: Instituut voor het Archeologisch Patrimonium. p 67-81.Google Scholar
Ervynck, A, Boudin, M, Van den Brande, T, Van Strydonck, M. 2014. Dating human remains from the historical period in Belgium. Diet changes and the impact of marine and freshwater reservoir effects. Radiocarbon 56(2):779788.Google Scholar
Ervynck, A, Lentacker, A, Müldner, G, Richards, M, Dobney, K. 2007. An investigation into the transition from forest dwelling pigs to farm animals in medieval Flanders, Belgium’. In: Albarella U, Dobney K, Ervynck A, Rowley-Conwy P, editors. Pigs & Humans. 10,000 years of interaction. Oxford: Oxford University Press. p 171193.Google Scholar
Fernandes, R, Dreves, A, Nadeau, MJ, Grootes, PM. 2013. A freshwater lake saga: Carbon routing within the aquatic food web of Lake Schwerin. Radiocarbon 55(3):11021113.Google Scholar
Fernandes, R, Rinne, C, Nadeau, MJ, Grootes, PM. 2016. Towards the use of radiocarbon as a dietary proxy: Establishing a first wide-ranging radiocarbon reservoir effects baseline for Germany. Environmental Archaeology 21(3):285294.Google Scholar
Fischer, A, Olsen, J, Richards, M, Heinemeier, J, Sveinbjörnsdóttir, AE, Bennike, P. 2007. Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: evidence from stable isotope values of humans and dogs. Journal of Archaeological Science 34(12):21252150.Google Scholar
Fontes, JC. 1992. Chemical and isotopic constraints on 14C dating of groundwater pages. In: Taylor E, Long A, Kra RS, editors. Radiocarbon after Four Decades: An Interdisciplinary Perspective. New York: Springer. p 242261.Google Scholar
Fuller, BT, Müldner, G, Van Neer, W, Ervynck, A, Richards, MP. 2012. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). Journal of Analytical Atomic Spectrometry 27:807820.Google Scholar
Geyh, MA, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921931.Google Scholar
Grupe, G. 2014. Application of isotopic mixing models for palaeodietary and paleoecological studies. Anthropologischer Anzeiger 71(1-2):2139.Google Scholar
Häberle, S, Fuller, BT, Nehlich, O, Van Neer, W, Schibler, J, Hüster Plogmann, H. 2016a. Inter- and intraspecies variability in stable isotope ratio values of archaeological freshwater fish remains from Switzerland (11th-19th centuries AD). Environmental Archaeology 21(2):119132.Google Scholar
Häberle, S, Nehlich, O, Fuller, B, Schibler, J, Van Neer, W, Hüster Plogmann, H. 2016b. Carbon and nitrogen isotopic ratios in archaeological and modern Swiss fish as possible markers for diachronic anthropogenic activity in freshwater ecosystems. Journal of Archaeological Science: Reports 10:411423.Google Scholar
Hall, BL, Henderson, GM. 2001. Use of uranium-thorium dating to determine past 14C reservoir effects in lakes: examples from Antarctica. Earth and Planetary Science Letters 193(3-4):565577.CrossRefGoogle Scholar
Hellings, L, Dehairs, F, Van Damme, S, Baeyens, W. 2001. Dissolved inorganic carbon in a highly polluted estuary (the Scheldt). Limnology and Oceanography 46(6):14061414.Google Scholar
Higham, T, Bronk Ramsey, C, Karavanic, I, Smith, FH, Trinkaus, E. 2006. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proceedings of the National Academy of Science (USA) 103(3):553557.CrossRefGoogle ScholarPubMed
Higham, T, Warren, R, Belinskij, A, Härke, H, Wood, R. 2010. Radiocarbon dating, stable isotope analysis, and diet-derived offsets in 14C ages from the Klin-Yar site, Russian North Caucasus. Radiocarbon 52(2-3):653670.Google Scholar
Huet, M. 1954. Biologie, profils en long et en travers des eaux courantes. Bulletin français de pisciculture 175:4153.CrossRefGoogle Scholar
International Atomic Energy Agency 2013. Isotope methods for dating old groundwater. Vienna: IAEA.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.Google Scholar
Lanting, JN, van der Plicht, J. 1998. Reservoir effects and apparent 14C-ages. Journal of Irish Archaeology 9:151165.Google Scholar
Lentacker, A, Ervynck, A, Van Neer, W. 2004. Gastronomy or religion? The animal remains from the mithraeum at Tienen (Belgium). In: O’ Day SJ, Van Neer W, Ervynck A, editors. Behaviour behind bones. The zooarchaeology of ritual, religion, status and identity. Oxford: Oxbow Books. p 7794.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.Google Scholar
Martens, M. 2004. The Mithraeum in Tienen (Belgium): small finds and what they can tell us. In: Martens M, De Boe G, editors. Roman mithraism: the evidence of the small finds. Archeologie in Vlaanderen Monografie 4. Zellik & Tienen: Institute for the Archaeological Heritage of the Flemish Community & Museum Het Toreke. p 2556.Google Scholar
Mattéoni, O. 2004. La pêche des étangs du domaine comtal en Forez à la fin du Moyen Age . In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998. Lille: CD-ROM (no page numbers).Google Scholar
Meire, P, Ysebaert, T, Van Damme, S, Van den Bergh, E, Maris, T, Struyf, E. 2005. The Scheldt estuary: a description of a changing ecosystem. Hydrobiologia 540:111.Google Scholar
Meire, P, Amery, D, Decleer, M. 2015. De Schelde, van bron tot monding. Brussel: Academic and Scientific Publishers.Google Scholar
Mellars, P. 2006. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439(7079):931935.Google Scholar
Meylemans, E, Bogemans, F, Storme, A, Perdaen, Y, Verdurmen, I, Deforce, K. 2013. Lateglacial and Holocene fluvial dynamics in the Lower Scheldt basin (N-Belgium) and their impact on the presence, detection and preservation potential of the archaeological record. Quaternary International 308-309:148161.CrossRefGoogle Scholar
Monvoisin, JM. 2004. La pêche en étangs en Champagne à la fin du Moyen Age: carpiculture pour le marché parisien au XIVe siècle . In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998. Lille: CD-ROM (no page numbers).Google Scholar
Mook, WG. 1992. Preface to hydrology section. In: Taylor E, Long A, Kra RS, editors. Radiocarbon after Four Decades: An Interdisciplinary Perspective. New York: Springer. p 241.Google Scholar
Moreton, SG, Rosqvist, GC, Davies, SJ, Bentley, MJ. 2004. Radiocarbon reservoir ages from freshwater lakes, South Georgia, sub-Antarctic: Modern analogues from particulate organic matter and surface sediments. Radiocarbon 46(2):621626.CrossRefGoogle Scholar
Motuzaite-Matuzeviciute, G, Lillie, M, Telizhenko, S. 2015. AMS radiocarbon dating from the Neolithic of Eastern Ukraine casts doubts on existing chronologies. Radiocarbon 57(4):657664.Google Scholar
Němec, M, Wacker, L, Gäggeler, H. 2010. Optimization of the graphitisation process at AGE-1. Radiocarbon 52(2-3):13801393.Google Scholar
Phillips, DL, Inger, R, Bearhop, S, Jackson, AL, Moore, JW, Parnell, AC, Semmens, BX, Ward, EJ. 2014. Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92(10):823835.Google Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science. http://www.heritagesciencejournal.com/content/1/1/24 Google Scholar
Pospieszny, Ł. 2015. Freshwater reservoir effect and the radiocarbon chronology of the cemetery in Ząbie, Poland. Journal of Archaeological Science 53:264276.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51(4):11111150.Google Scholar
Riget, FF, Møller, P, Dietz, R, Nielsen, TG, Asmund, G, Strand, J, Larsen, MM, Hobson, KA. 2007. Transfer of mercury in the marine food web of West Greenland. Journal of Environmental Monitoring 9(8):877883.Google Scholar
Rouillard, J. 2004. Les étangs royaux sous Philippe le Bel d’après les comptes royaux . In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998. Lille: CD-ROM (no page numbers).Google Scholar
Schmölcke, U, Meadows, J, Ritchie, K, Bērziņš, V, Lübke, H, Zagorska, I. 2016. Neolithic fish remains from the freshwater shell midden Riņņukalns in northern Latvia. Environmental Archaeology 21(4):325333.Google Scholar
Schulting, RJ, Bronk Ramsey, C, Bazaliiskii, VI, Weber, A. 2015. Highly variable freshwater reservoir effects found along the upper LenaWatershed, Cis-Baikal, southeast Siberia. Radiocarbon 57(4):581593.Google Scholar
Shishlina, NI. 2010. Novye dannye o rezervuarnom effekte v Prikaspii (po materialam sovremennykh i arkheologicheskikh obraztsov) [New data on reservoir effect in Caspian Sea region (on materials from modern and archaeological samples)]. In: Problemy i periodizatsiia arkheologicheskikh pamiatnikov i kul’tur Severnogo Kavkaza. XXVI “Krupnovskie chteniia” po arkheologii Severnogo Kavkaza. Tez. dokl. Respublika Ingushetiia: Magas. p 371-3.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137189.CrossRefGoogle Scholar
Svyatko, SV, Schulting, R, Poliakov, A, Ogle, N, Reimer, PJ. 2016. A lack of freshwater reservoir effects in human radiocarbon dates in the Eneolithic to Iron Age in the Minusinsk Basin. Archaeological and Anthropological Sciences, 110. DOI: 10.1007/s12520-016-0383-3 Google Scholar
Svyatko, SV, Reimer, PJ, Schulting, R. 2017. Modern freshwater reservoir offsets in the Eurasian steppe: Implications for archaeology. Radiocarbon, 111. DOI: 10.1017/RDC.2017.11 Google Scholar
Teetaert, D, Boudin, M, Saverwyns, S, Crombé, P. 2017. Food and soot: organic residues on outer pottery surfaces. Radiocarbon, 113. DOI: 10.1017/RDC.2017.25 Google Scholar
Theurot, J. 2004. Approche de la pêche et du ravitaillement en poisson dans les villes de la vallée du Doubs aux XIVe et XVe siècles. In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998. Lille: CD-ROM (no page numbers).Google Scholar
Thieren, E, Wouters, W, Van Neer, W, Ervynck, A. 2012. Body length estimation of the European eel Anguilla anguilla on the basis of isolated skeletal elements. Cybium 36:551562.Google Scholar
Troubleyn, L, Kinnaer, F, Ervynck, A, Beeckmans, L, Caluwé, D, Cooremans, B, De Buyser, F, Deforce, K, Desender, K, Lentacker, A, Moens, J, Van Bulck, G, Van Dijck, M, Van Neer, W, Wouters, W. 2009. Consumption patterns and living conditions inside Het Steen, the late medieval prison of Malines (Mechelen, Belgium). Journal of the Archaeology of the Low Countries 1(2):547.Google Scholar
van Klinken, GJ, Hedges, REM. 1995. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22(2):263270.Google Scholar
Van Neer, W, Ervynck, A. 1994. New data on fish remains from Belgian archaeological sites. In: Van Neer W, editor. Fish exploitation in the past. Proceedings of the 7th Meeting of the ICAZ Fish Remains Working Group. Annales du Musée Royal de l’Afrique Centrale, Sciences Zoologiques 274. Tervuren: Musée Royal de l’Afrique Centrale. p 217-229.Google Scholar
Van Neer, W, Ervynck, A. 2004. Apport de l’archéozoologie à la connaissance de l’exploitation de l’eau douce au Moyen Age et à l’Epoque moderne en Belgique. In: Benoit P, Loridant F, Mattéoni O, editors. Pêche et pisciculture en eau douce: la rivière et l’étang au Moyen Age. Actes des Premières Rencontres internationales de Liessies 27, 28, 29 avril 1998 . Lille: CD-ROM (no page numbers).Google Scholar
Van Neer, W, Ervynck, A. 2016. The rise of sea-fish consumption in inland Flanders, Belgium. In: Barrett JH, Orton DC, editors. Cod and Herring. The Archaeology and History of Medieval Sea Fishing. Oxford: Oxbow. p 156171.Google Scholar
Van Strydonck, M, De Mulder, G, editors. 2000. De Schelde. Verhaal van een rivier. Leuven: Davidsfonds.Google Scholar
Van Strydonck, M, Ervynck, A, Vandenbruaene, M, Boudin, M. 2009. Anthropology and 14C analysis of skeletal remains from relic shrines: an unexpected source of information for medieval archaeology. Radiocarbon 51(2):569577.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7-8):931934.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age-determinations - Critique. Archaeometry 20:1931.Google Scholar
Zhou, A, He, Y, Wu, D, Zhang, X, Zhang, C, Liu, Z, Yu, J. 2015. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene. PLoS ONE 10(3):e0121532. DOI: 10.1371/journal.pone.0121532 Google Scholar
Supplementary material: PDF

Ervynck et al. supplementary material

Table S1

Download Ervynck et al. supplementary material(PDF)
PDF 465.2 KB