Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T00:20:45.389Z Has data issue: false hasContentIssue false

Aquatic Radiocarbon Reservoir Offsets in the Southeastern Baltic

Published online by Cambridge University Press:  23 February 2016

Gytis Piličiauskas*
Affiliation:
Department of Archaeology, Lithuanian Institute of History, Kražių 5, LT-01108 Vilnius, Lithuania
Carl Heron
Affiliation:
Archaeological Sciences, University of Bradford, Richmond Road, Bradford, West Yorkshire BD7 1DP, UK
*
Corresponding author. Email: [email protected].

Abstract

The aim of this article is to discuss radiocarbon dating offsets due to freshwater and marine reservoir effects (FRE and MRE, respectively) in the southeastern Baltic. Thirty-six 14C dates from Lithuanian coastal and inland Subneolithic, Neolithic, and Bronze Age sites as well as two Mesolithic-Neolithic cemeteries are presented here. Accelerator mass spectrometry (AMS) dates, sometimes paired or tripled, have been obtained on samples of various origin, foodcrusts, or visible charred deposits adhering to the surfaces of ceramic vessel walls were also dated and investigated for stable isotope signals. The results argue for a significant freshwater component in the food processed in ceramic vessels during the Subneolithic and Neolithic. Paired dating of ungulate and human bones at the Spiginas and Donkalnis cemeteries (6300–1900 cal BC) does not suggest an FRE, although stable isotope data on human bone collagen strongly suggest a large input of freshwater food in the diet. An FRE in the order of 320–510 yr was estimated for the Šventoji paleolagoon around 3000 cal BC. At the same time, the FRE of the Curonian Lagoon could be larger as implied by large apparent 14C ages of modern pike-perch (981 ± 30 BP) and bream (738 ± 30 BP) bones as well as “foodcrust” offsets (650–530 yr) at Nida (3500–2500 cal BC). An MRE of 190 ± 43 yr was estimated for the southeastern coast of the Littorina Sea according to offsets between dates of seal bones and terrestrial samples at Nida and Šventoji. Any FRE at Lake Kretuonas remains uncertain due to the limited work to date.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrén, E, Andrén, T, Kunzendorf, H. 2000. Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. The Holocene 10(6):687702.Google Scholar
Antanaitis-Jacobs, I, Richards, M, Daugnora, L, Jankauskas, R, Ogrinc, N. 2009. Diet in early Lithuanian prehistory and the new stable isotope evidence. Archaeologia Baltica 12:1230.Google Scholar
Ascough, PL, Cook, GT, Church, MJ, Dunbar, E, Einarsson, Á, McGovern, TH, Dugmore, AJ, Perdikaris, S, Hastie, H, Fririksson, A, Gestsdóttir, H. 2010. Temporal and spatial variations in freshwater 14C reservoir effects: Lake Mývatn, northern Iceland. Radiocarbon 52(3):1098–112.Google Scholar
Brazaitis, D. 2002. Narviškos keramikos stiliai rytu Lietuvoje (Styles of Narva pottery in East Lithuania). Lietuvos Archeologija 23:5172. In Lithuanian with English summary.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.Google Scholar
Bronk Ramsey, C, Pettitt, PB, Hedges, REM, Hodgins, GWL, Owen, DC. 2000. Radiocarbon dates from the Oxford AMS system: Archaeometry Datelist 29. Archaeometry 42(1):243–54.Google Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155–63.Google Scholar
Butrimas, A. 1992. Spigino mezolito kapai (Spiginas mesolithic graves). Lietuvos Archeologija 8:49. In Lithuanian with Russian summary.Google Scholar
Butrimas, A, Kunskas, R, Cesnys, G, Balčiuniene, I, Jankauskas, R. 1985. Duonkalnis: velyvojo neolito gyvenviete, alkas ir kapinynas (Duonkalnis: Late Neolithic settlement, place of sacrifice and cemetery). Lietuvos Archeologija 4:2566. In Lithuanian with Russian summary.Google Scholar
Cook, GT, Bonsall, C, Hedges, REM, McSweeney, K, Boroneant, V, Pettitt, P. 2001. A freshwater diet-derived 14C reservoir effect at the Stone Age sites in the Iron Gates Gorge. Radiocarbon 43(2A):453–60.Google Scholar
Craig, OE, Forster, M, Andersen, SH, Koch, E, Crombé, P, Milner, NJ, Stern, B, Bailey, GN, Heron, C. 2007. Molecular and isotopic demonstration of the processing of aquatic products in northern European prehistoric pottery. Archaeometry 49(1):135–52.Google Scholar
Craig, OE, Steele, VJ, Fischer, A, Hartz, S, Andersen, SH, Donahue, P, Glykou, A, Saul, H, Jones, DM, Koch, E, Heron, C. 2011. Ancient lipids reveal continuity in culinary practices across the transition to farming in Northern Europe. Proceedings of the National Academy of Sciences of the USA 108(44):17,9105.Google Scholar
Database. 2007. 2007 m. vidutiniai hidrocheminiai duomenys, hidrobiologiniai duomenys (fitoplanktonas, zoobentosas). Lietuvo aplinkos apsaugos agenturos duomenu baze (Average hydrochemical data. Database of the Environmental Protection Agency of Lithuania). http://vanduo.gamta.lt/cms/index?rubricId=8ea41f73-9742-4d71-aa10-0a5988713fe5. Accessed 19 May 2015. In Lithuanian.Google Scholar
Database. 2012a. Ezeru ir tvenkiniu bukle. 2012 m. vidutiniai hidrocheminiai duomenys, hidrobiologiniai duomenys (fitoplanktonas, zoobentosas). Lietuvo aplinkos apsaugos agenturos duomenu baze (Average hydrochemical data. State of lakes and ponds. Vidutiniai hidrocheminiai duomenys. Database of the Environmental Protection Agency of Lithuania). http://vanduo.gamta.lt/cms/index?rubricId=8ea41f73-9742-4d71-aa10-0a5988713fe5. Accessed 19 May 2015. In Lithuanian.Google Scholar
Database. 2012b. Upiu bukle. 2012 m. Vidutiniai hidrocheminiai duomenys, hidrobiologiniai duomenys (fitobentosas, fitoplanktonas, ichtiofauna, zoobentosas) Lietuvo aplinkos apsaugos agenturos duomenu baze (Average hydrochemical data. State of rivers. Database of the Environmental Protection Agency of Lithuania). http://vanduo.gamta.lt/cms/index?rubricId=6adeeb1d-c902-49ab-81bb-d64b8bccefdd. Accessed 19 May 2015. In Lithuanian.Google Scholar
Daugnora, L, Girininkas, A. 2009. Butchery in the Early Bronze Age. Archaeologia Baltica 12:4656.Google Scholar
Fernandes, R, Bergemann, S, Hartz, S, Grootes, PM, Nadeau, M-J, Melzner, F, Rakowski, A, Hüls, M. 2012. Mussels with meat: bivalve tissue-shell radiocarbon age differences and archaeological implications. Radiocarbon 54(3):953–65.Google Scholar
Fernandes, R, Dreves, A, Grootes, PM, Nadeau, M-J. 2013. A freshwater lake saga: carbon routing within the aquatic food web of Lake Schwerin. Radiocarbon 55(2-3):1102–13.CrossRefGoogle Scholar
Fischer, A, Heinemeier, J. 2003. Freshwater reservoir effect in 14C dates of food residue on pottery. Radiocarbon 45(3):449–66.Google Scholar
Gailiušis, B, Jablonskis, J, Kovalenkoviene, M. 2001. Lietuvos upes. Hidrografija ir nuotekis (Lithuanian rivers. Hydrography and discharge). Kaunas: Lietuvos energetikos institutas. In Lithuanian.Google Scholar
Heron, C, Craig, OE, Luquin, A, Steele, VJ, Thompson, A, Piličiauskas, G. 2015. Cooking fish and drinking milk? Patterns in pottery use in the southeastern Baltic, 3300-2400 cal BC. Journal of Archaeological Science 63:3343.Google Scholar
Hua, Q, Barbetti, M, Rakowski, A. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4):2059–72.CrossRefGoogle Scholar
Juodagalvis, V, Simpson, DN. 2000. šventoji revisited – the joint Lithuanian-Norwegian project. Lietuvos Archeologija 19:139–51.Google Scholar
Kabailiene, M. 2006. Gamtines aplinkos raida Lietuvoje per 14000 metu (Evolution of natural environment in Lithuania during 14000 years). Vilnius: Vilniaus universiteto leidykla. In Lithuanian.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):1306–16.Google Scholar
Kovaliukh, NN, Skripkin, VV. 1994. An universal technology for oxidation of carbon-containing materials for radiocarbon dating. In: Abstracts and Papers of Conference on Geochronology and Dendrochronology of Old Town's and Radiocarbon Dating of Archaeological Findings. Vilnius, Lithuania, 31 October–4 November. Vilnius: Vilnius University Press. p 3742.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.CrossRefGoogle ScholarPubMed
Machnik, J. 1997. “Rzucewo culture” and the Early Horizon of the Corded Ware. In: Król, D, editor. The Built Environment of Coast Areas during the Stone Age. Gdańsk: Archaeological Museum. p 128–34.Google Scholar
Meadows, J, Lübke, H, Zagorska, I, Berzinš, V, Cerina, A, Ozola, I. 2014. Potential freshwater reservoir effects in a Neolithic shell midden at Rinnukalns, Latvia. Radiocarbon 56(2):823–32.Google Scholar
Philippsen, B, Heinemeier, J. 2013. Freshwater reservoir effect variability in northern Germany. Radiocarbon 55(2-3): 1085–101.CrossRefGoogle Scholar
Piličiauskas, G. 2013. Kuršiu nerijos archeologiniu tyrimu strategijos (Archaeological investigation strategy in the Curonian spit). Lietuvos Archeologija 39:255–84. In Lithuanian with English summary.Google Scholar
Piličiauskas, G. In press. Lietuvos pajurio subneolitas ir neolitas. Zemes ukio pradzia (Subneolithic and Neolithic of coastal Lithuania. The beginning of farming). Lietuvos Archeologija 42. In Lithuanian with English summary.Google Scholar
Piličiauskas, G, Lavento, M, Oinonen, M, Grizas, G. 2011. New 14C dates of Neolithic and Early Metal period ceramics in Lithuania. Radiocarbon 53(4):629–43.Google Scholar
Piličiauskas, G, Mazeika, J, Gaidamavičius, A, Vaikutiene, G, Bitinas, A, Skuratovič, Z, Stančikaite, M. 2012. New archaeological, paleoenvironmental, and 14C data from šventoji Neolithic sites, NW Lithuania. Radiocarbon 54(3–4):1017–31.Google Scholar
Piličiauskas, G, Luik, H, Piličiauskiene, G. 2015. Reconsidering Late Mesolithic and Early Neolithic of the Lithuanian coast: the Smelte and Palanga sites. Estonian Journal of Archaeology 19(1):328.Google Scholar
Piotrowska, N, Goslar, T. 2002. Preparation of bone samples in the Gliwice radiocarbon laboratory for AMS radiocarbon dating. Isotopes in Environmental and Health Studies 38:19.Google Scholar
Rainys, A. 2009. Nemunas. In: Razumas, V, editor. Visuotine lietuviu enciklopedija XVI. Vilnius: Mokslo ir enciklopediju leidybos centras. p 224. In Lithuanian.Google Scholar
Rimantiene, R. 1984. Akmens amzius Lietuvoje (Stone Age in Lithuania). Vilnius: Mokslas. In Lithuanian with German and Russian summaries.Google Scholar
Rimantiene, R. 1989. Nida. Senuju baltu gyvenviete (Nida. Settlement of ancient Balts). Vilnius: Mokslas. In Lithuanian with German and Russian summaries.Google Scholar
Rimantiene, R. 1999. Die Kurische Nehrung aus dem Blickwinkel des Archeaologen. German edition. Vilnius: Vilnius Academy of Arts Press.Google Scholar
Rimantiene, R. 2005. Die Steinzeitfischer an der Ostseelagune in Litauen. Vilnius: Litauisches Nationalmuseum.Google Scholar
Rundkvist, M, Lindquist, C, Thorsberg, K. 2004. Barshalder 3. Rojrhage in Götlingbo. A multicomponent Neolithic shore site on Gotland. Stockholm Archaeological Reports 41:135.Google Scholar
Saltsman, EB. 2010. Gamtine aplinka ir gyventoju ukine veikla Birzulio ezero apylinkese holoceno laikotarpiu (Natural environment and human activity history in the environs of the Birzulis Lake throughout Holocene). Moscow: Rosijskaya akademiya nauk. In Russian.Google Scholar
Stančikaite, M, Baltrunas, V, Kisieliene, D, Guobyte, R, Ostrauskas, T. 2004. Natural environment and human activity history in the environs of the Birzulis Lake throughout Holocene. Acta Academiae Artium Vilnensis 34:4566. In Lithuanian with English summary.Google Scholar
Ward, GK, Wilson, SR. 1978. Procedures for comparing and combining radiocarbon age determinations: a critique. Archaeometry 20(1):1931.Google Scholar