Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:52:10.110Z Has data issue: false hasContentIssue false

THE APPLICATION OF POLLEN RADIOCARBON DATING AND BAYESIAN AGE-DEPTH MODELING FOR DEVELOPING ROBUST GEOCHRONOLOGICAL FRAMEWORKS OF WETLAND ARCHIVES

Published online by Cambridge University Press:  27 April 2022

Haidee Cadd*
Affiliation:
ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), University of Wollongong, Australia Chronos 14Carbon-Cycle Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia GeoQuest Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia
Bryce Sherborne-Higgins
Affiliation:
GeoQuest Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia
Lorena Becerra-Valdivia
Affiliation:
Chronos 14Carbon-Cycle Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, OxfordOX13QY, United Kingdom
John Tibby
Affiliation:
Geography, Environment and Population, and Sprigg Geobiology Centre, University of Adelaide, Australia
Cameron Barr
Affiliation:
Geography, Environment and Population, and Sprigg Geobiology Centre, University of Adelaide, Australia
Matt Forbes
Affiliation:
ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), University of Wollongong, Australia GeoQuest Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia KCB Australasia Pty ltd, Brisbane, Australia
Tim J Cohen
Affiliation:
ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), University of Wollongong, Australia GeoQuest Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia
Jonathan Tyler
Affiliation:
Department of Earth Sciences, School of Physical Sciences, University of Adelaide, Australia
Marcus Vandergoes
Affiliation:
GNS Science, Lower Hutt, 5040, New Zealand
Alexander Francke
Affiliation:
GeoQuest Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Australia Department of Earth Sciences, School of Physical Sciences, University of Adelaide, Australia
Richard Lewis
Affiliation:
Department of Earth Sciences, School of Physical Sciences, University of Adelaide, Australia
Lee J Arnold
Affiliation:
Department of Earth Sciences, School of Physical Sciences, University of Adelaide, Australia
Geraldine Jacobsen
Affiliation:
Centre for Accelerator Science, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
Chris Marjo
Affiliation:
Chronos 14Carbon-Cycle Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
Chris Turney
Affiliation:
Chronos 14Carbon-Cycle Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), University of New South Wales, Australia Division of Research, University of Technology Sydney, Ultimo, NSW 2007, Australia
*
*Corresponding author. Email: [email protected]

Abstract

Wetland sediments are valuable archives of environmental change but can be challenging to date. Terrestrial macrofossils are often sparse, resulting in radiocarbon (14C) dating of less desirable organic fractions. An alternative approach for capturing changes in atmospheric 14C is the use of terrestrial microfossils. We 14C date pollen microfossils from two Australian wetland sediment sequences and compare these to ages from other sediment fractions (n = 56). For the Holocene Lake Werri Berri record, pollen 14C ages are consistent with 14C ages on bulk sediment and humic acids (n = 14), whilst Stable Polycyclic Aromatic Carbon (SPAC) 14C ages (n = 4) are significantly younger. For Welsby Lagoon, pollen concentrate 14C ages (n = 21) provide a stratigraphically coherent sequence back to 50 ka BP. 14C ages from humic acid and >100 µm fractions (n = 13) are inconsistent, and often substantially younger than pollen ages. Our comparison of Bayesian age-depth models, developed in Oxcal, Bacon and Undatable, highlight the strengths and weaknesses of the different programs for straightforward and more complex chrono-stratigraphic records. All models display broad similarities but differences in modeled age-uncertainty, particularly when age constraints are sparse. Intensive dating of wetland sequences improves the identification of outliers and generation of robust age models, regardless of program used.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anchukaitis, KJ, Tierney, JE. 2013. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim. Dyn. 41:12911306. doi: 10.1007/s00382-012-1483-0.CrossRefGoogle Scholar
Arnold, LJ, Demuro, M, Navazo, M, Benito-Calvo, A, Pérez-González, A. 2013. OSL dating of the Middle Palaeolithic Hotel California site, Sierra de Atapuerca, north-central Spain. Boreas 42:285305. doi: 10.1111/j.1502-3885.2012.00262.x.CrossRefGoogle Scholar
Arnold, LJ, Roberts, RG. 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures. Quat. Geochronol. 4:204230. doi: 10.1016/j.quageo.2008.12.001.CrossRefGoogle Scholar
Ascough, PL, Bird, MI, Brock, F, Higham, TFG, Meredith, W, Snape, CE, Vane, CH. 2009. Hydropyrolysis as a new tool for radiocarbon pre-treatment and the quantification of black carbon. Quat. Geochronol. 4:140147. doi: 10.1016/j.quageo.2008.11.001.CrossRefGoogle Scholar
Ascough, PL, Bird, MI, Meredith, W, Wood, RE, Snape, CE, Brock, F, Higham, TFG, Large, DJ, Apperley, DC. 2010. Hydropyrolysis: Implications for radiocarbon pretreatment and characterization of black carbon. Radiocarbon 52:13361350. doi: 10.1017/S0033822200046427.CrossRefGoogle Scholar
Barr, C, Tibby, J, Moss, PT, Halverson, GP, Marshall, JC, McGregor, GB, Stirling, E. 2017. A 25,000-year record of environmental change from Welsby Lagoon, North Stradbroke Island, in the Australian subtropics. Quat. Int. 449:106118. doi: 10.1016/j.quaint.2017.04.011.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6:457474. doi: 10.1214/11-BA618.CrossRefGoogle Scholar
Blaauw, M, Christen, JA, Bennett, KD, Reimer, PJ. 2018. Double the dates and go for Bayes — impacts of model choice, dating density and quality on chronologies. Quat. Sci. Rev. 188:5866. doi: 10.1016/j.quascirev.2018.03.032.CrossRefGoogle Scholar
Black, MP, Mooney, SD, Martin, HA. 2006. A 43,000-year vegetation and fire history from Lake Baraba, New South Wales, Australia. Quat. Sci. Rev. 25:30033016. doi: 10.1016/j.quascirev.2006.04.006.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37:425430. doi: 10.1017/s0033822200030903.CrossRefGoogle Scholar
Bronk Ramsey, C. 2008. Deposition models for chronological records. Quat. Sci. Rev. 27:4260.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Dealing with Outliers and Offsets in Radiocarbon Dating. Radiocarbon 51: 10231045. doi: 10.1017/S0033822200034093.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Mathewes, RW, Vogel, JS, Southon, JR. 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quat. Res. 32:205212. doi: 10.1016/0033-5894(89)90076-8.CrossRefGoogle Scholar
Cadd, H, Petherick, L, Tyler, J, Herbert, A, Cohen, TJ, Sniderman, K, Barrows, TT, Fulop, RH, Knight, J, Kershaw, AP, Colhoun, EA, Harris, MRP. 2021. A continental perspective on the timing of environmental change during the last glacial stage in Australia. Quat. Res. 102:523. doi: 10.1017/qua.2021.16.CrossRefGoogle Scholar
Cadd, HR, Tibby, J, Barr, C, Tyler, J, Unger, L, Leng, MJ, Marshall, JC, McGregor, G, Lewis, R, Arnold, LJ, Lewis, T, Baldock, J. 2018. Development of a southern hemisphere subtropical wetland (Welsby Lagoon, south-east Queensland, Australia) through the last glacial cycle. Quat. Sci. Rev. 202, 5365. doi: 10.1016/j.quascirev.2018.09.010.CrossRefGoogle Scholar
Cadd, HR, Tyler, J, Tibby, J, Baldock, J, Hawke, B, Barr, C, Leng, MJ. 2020. The potential for rapid determination of charcoal from wetland sediments using infrared spectroscopy. Palaeogeogr. Palaeoclimatol. Palaeoecol. 542, 109562. doi: 10.1016/j.palaeo.2019.109562.CrossRefGoogle Scholar
Clymo, RS, Mackay, D. 1987. Upwash and downwash of pollen and spores in the unsaturated surface layer of sphagnum-dominated peat. New Phytol. 105:175183. doi: 10.1111/j.1469-8137.1987.tb00120.x.CrossRefGoogle Scholar
Dixon, B, Tyler, J, Henley, BJ, Drysdale, R. 2019. Regional patterns of hydroclimate variability in southeastern Australia over the past 1200 years. Earth Sp. Sci. Open Arch. doi: 10.1002/essoar.10501482.1.CrossRefGoogle Scholar
Eckmeier, E, van der Borg, K, Tegtmeier, U, Schmidt, MWI, Gerlach, R. 2009. Dating charred soil organic matter: comparison of radiocarbon ages from macrocharcoals and chemically separated charcoal carbon. Radiocarbon 51:437443. doi: 10.1017/S0033822200055831.CrossRefGoogle Scholar
Field, E, Marx, S, Haig, J, May, JH, Jacobsen, G, Zawadzki, A, Child, D, Heijnis, H, Hotchkis, M, McGowan, H, Moss, P. 2018. Untangling geochronological complexity in organic spring deposits using multiple dating methods. Quat. Geochronol. 43:5071. doi: 10.1016/j.quageo.2017.10.002.CrossRefGoogle Scholar
Fletcher, WJ, Zielhofer, C, Mischke, S, Bryant, C, Xu, X, Fink, D. 2017. AMS radiocarbon dating of pollen concentrates in a karstic lake system. Quat. Geochronol. 39:112123. doi: 10.1016/j.quageo.2017.02.006.CrossRefGoogle Scholar
Forbes, M, Cohen, T, Jacobs, Z, Marx, S, Barber, E, Dodson, J, Zamora, A, Cadd, H, Francke, A, Constantine, M, Mooney, S, Short, J, Tibby, J, Parker, A, Cendón, D, Peterson, M, Tyler, J, Swallow, E, Haines, H, Gadd, P, Woodward, C. 2021. Comparing interglacials in eastern Australia: a multi-proxy investigation of a new sedimentary record. Quat. Sci. Rev. 252:106750. doi: 10.1016/j.quascirev.2020.106750.CrossRefGoogle Scholar
Gavin, DG. 2001. Estimation of inbuilt age in radiocarbon ages of soil charcoal for fire history studies. Radiocarbon 43:2744. doi: 10.1017/S003382220003160X.CrossRefGoogle Scholar
Hogg, AG, Heaton, TJ, Hua, Q, Palmer, JG, Turney, CS, Southon, J, Bayliss, A, Blackwell, PG, Boswijk, G, Bronk Ramsey, C, Pearson, C, Petchey, F, Reimer, P, Reimer, R, Wacker, L. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62:759778. doi: 10.1017/RDC.2020.59.CrossRefGoogle Scholar
Howarth, JD, Fitzsimons, SJ, Jacobsen, GE, Vandergoes, MJ, Norris, RJ. 2013. Identifying a reliable target fraction for radiocarbon dating sedimentary records from lakes. Quat. Geochronol. 17:6880. doi: 10.1016/j.quageo.2013.02.001.CrossRefGoogle Scholar
Jones, JM, Gille, ST, Goosse, H, Abram, NJ, Canziani, PO, Charman, DJ, Clem, KR, Crosta, X, De Lavergne, C, Eisenman, I, England, MH, Fogt, RL, Frankcombe, LM, Marshall, GJ, Masson-Delmotte, V, Morrison, AK, Orsi, AJ, Raphael, MN, Renwick, JA, Schneider, DP, Simpkins, GR, Steig, EJ, Stenni, B, Swingedouw, D, Vance, TR. 2016. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Chang. 6: 917926. doi: 10.1038/nclimate3103.CrossRefGoogle Scholar
Kasai, Y, Leipe, C, Saito, M, Kitagawa, H, Lauterbach, S, Brauer, A, Tarasov, PE, Gosla, T, Arai, F, Sakuma, S. 2021. Breakthrough in purification of fossil pollen for dating of sediments by a new large-particle on-chip sorter. Sci. Adv. 7. doi: 10.1126/sciadv.abe7327.CrossRefGoogle Scholar
Kemp, CW, Tibby, J, Arnold, LJ, Barr, C, Gadd, PS, Marshall, JC, Mcgregor, GB, Jacobsen, GE. 2020. Climates of the last three interglacials in subtropical eastern Australia inferred from wetland sediment geochemistry. Palaeogeogr. Palaeoclimatol. Palaeoecol. 538, 109463. doi: 10.1016/j.palaeo.2019.109463.CrossRefGoogle Scholar
Kilian, MR, van der Plicht, J, Van Geel, B, Goslar, T. 2002. Problematic 14C-AMS dates of pollen concentrates from Lake Gosciaz (Poland). Quat. Int. 88:2126. doi: 10.1016/S1040-6182(01)00070-2.CrossRefGoogle Scholar
Kron, P, Loureiro, J, Castro, S, Čertner, M. 2021. Flow cytometric analysis of pollen and spores: an overview of applications and methodology. Cytom. Part A 99:348358. doi: 10.1002/cyto.a.24330.CrossRefGoogle ScholarPubMed
Lewis, RJ, Tibby, J, Arnold, LJ, Barr, C, Marshall, J, McGregor, G, Gadd, P, Yokoyama, Y. 2020. Insights into subtropical Australian aridity from Welsby Lagoon, north Stradbroke Island, over the past 80,000 years. Quat. Sci. Rev. 234, 106262. doi: 10.1016/j.quascirev.2020.106262.CrossRefGoogle Scholar
Lewis, RJ, Tibby, J, Arnold, LJ, Gadd, P, Jacobsen, G, Barr, C, Negus, PM, Mariani, M, Penny, D, Chittleborough, D, Moss, E. 2021. Patterns of aeolian deposition in subtropical Australia through the last glacial and deglacial periods. Quat. Res. doi: 10.1017/qua.2020.117.CrossRefGoogle Scholar
Lougheed, BC, Obrochta, SP. 2019. A rapid, deterministic age-depth modeling routine for geological sequences with inherent depth uncertainty. Paleoceanogr. Paleoclimatology 34:122133. doi: 10.1029/2018PA003457.CrossRefGoogle Scholar
Lowe, JJ, Walker, MJC. 2000. Radiocarbon dating the Last Glacial-Interglacial Transition (ca. 14–9 14C Ka BP) in terrestrial and marine records: the need for new quality assurance protocols. Radiocarbon 42:5368. doi: 10.1017/S0033822200053054.CrossRefGoogle Scholar
Martin, L, Goff, J, Jacobsen, G, Mooney, S. 2019. The radiocarbon ages of different organic components in the mires of Eastern Australia. Radiocarbon 61:173184. doi: 10.1017/rdc.2018.118.CrossRefGoogle Scholar
May, JH, Marx, SK, Reynolds, W, Clark-Balzan, L, Jacobsen, GE, Preusser, F. 2018. Establishing a chronological framework for a late Quaternary seasonal swamp in the Australian ‘Top End.’ Quat. Geochronol. 47, 8192. doi: 10.1016/j.quageo.2018.05.010.CrossRefGoogle Scholar
Mensing, SA, Southon, JR. 1999. A simple method to separate pollen for AMS radiocarbon dating and its application to lacustrine and marine sediments. Radiocarbon 41:18. doi: 10.1017/S0033822200019287.CrossRefGoogle Scholar
Meredith, W, Ascough, PL, Bird, MI, Large, DJ, Snape, CE, Sun, Y, Tilston, EL. 2012. Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochim. Cosmochim. Acta 97:131147. doi: 10.1016/j.gca.2012.08.037.CrossRefGoogle Scholar
Moss, PT, Tibby, J, Petherick, L, McGowan, H, Barr, C. 2013. Late Quaternary vegetation history of North Stradbroke Island, Queensland, eastern Australia. Quat. Sci. Rev. 74:257272. doi: 10.1016/j.quascirev.2013.02.019.CrossRefGoogle Scholar
Neulieb, T, Levac, E, Southon, J, Lewis, M, Pendea, F, Chmura, GL. 2013. Potential Pitfalls of Pollen Dating. Radiocarbon 55, 11421155. doi: 10.2458/azu_js_rc.55.16274.CrossRefGoogle Scholar
Newnham, RM, Vandergoes, MJ, Garnett, MH, Lowe, DJ, Prior, C, Almond, PC. 2007. Test of AMS 14C dating of pollen concentrates using tephrochronology. J. Quat. Sci. 22:3751. doi: 10.1002/jqs.1016.CrossRefGoogle Scholar
Oswald, WW, Anderson, PM, Brown, TA, Brubaker, LB, Feng, SH, Lozhkin, AV, Tinner, W, Kaltenrieder, P. 2005. Effects of sample mass and macrofossil type on radiocarbon dating of arctic and boreal lake sediments. Holocene 15:758767. doi: 10.1191/0959683605hl849rr.CrossRefGoogle Scholar
PAGES2k Consortium. 2017. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4:170088. doi: 10.1038/sdata.2017.88.CrossRefGoogle Scholar
Paul, D, Been, HA, Aerts-Bijma, AT, Meijer, HAJ. 2016. Contamination on AMS sample targets by modern carbon is inevitable. Radiocarbon 58, 407418. doi: 10.1017/RDC.2016.9.CrossRefGoogle Scholar
Regnéll, J. 1992. Preparing pollen concentrates for AMS dating—a methodological study from a hard-water lake in southern Sweden. Boreas 21:373377. doi: 10.1111/j.1502-3885.1992.tb00042.x.CrossRefGoogle Scholar
Reimer, PJ, Austin, WEN, Bard, E, Bayliss, A, Blackwell, PG, Ramsey, CB, Butzin, M, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kromer, B, Manning, SW, Muscheler, R, Palmer, JG, Pearson, C, van der Plicht, J, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, Wacker, L, Adolphi, F, Büntgen, U, Capano, M, Fahrni, SM, Fogtmann-Schulz, A, Friedrich, R, Köhler, P, Kudsk, P, Miyake, F, Olsen, J, Reinig, F, Sakamoto, M, Sookdeo, A, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Richardson, F, Hall, VA. 1994. Pollen concentrate preparation from highly organic. Radiocarbon 36: 407412.CrossRefGoogle Scholar
Sheppard, JC, Ali, SY, Mehringer, PJ. 2020. 2. Radiocarbon dating of organic components of sediments and peats. In: Berger R, Suess HE, editors. Radiocarbon dating. University of California Press. p. 284–306. doi: doi: 10.1525/9780520312876-030.CrossRefGoogle Scholar
Tardif, R, Hakim, GJ, Perkins, WA, Horlick, KA, Erb, MP, Emile-Geay, J, Anderson, DM, Steig, EJ, Noone, D. 2019. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past 15:12511273. doi: 10.5194/cp-15-1251-2019.CrossRefGoogle Scholar
Telford, RJ, Heegaard, E, Birks, HJB. 2004. All age-depth models are wrong: But how badly? Quat. Sci. Rev. 23:15. doi: 10.1016/j.quascirev.2003.11.003.CrossRefGoogle Scholar
Tennant, RK, Jones, RT, Brock, F, Cook, C, Turney, CSM, Love, J, Lee, R. 2013. A new flow cytometry method enabling rapid purification of fossil pollen from terrestrial sediments for AMS radiocarbon dating. J. Quat. Sci. 28:229236. doi: 10.1002/jqs.2606.CrossRefGoogle Scholar
Thomas, Z.A, Turney, C.S.M, Hogg, A, Williams, A.N, Fogwill, C.J. 2019. Investigating Subantarctic 14C ages of different peat components: site and sample selection for developing robust age models in dynamic landscapes. Radiocarbon 61:10091027. doi: 10.1017/RDC.2019.54.CrossRefGoogle Scholar
Tibby, J, Tyler, JJ, Barr, C. 2018. Post little ice age drying of eastern Australia conflates understanding of early settlement impacts. Quat. Sci. Rev. 202:4552. doi: 10.1016/j.quascirev.2018.10.033.CrossRefGoogle Scholar
Tierney, JE, Smerdon, JE, Anchukaitis, KJ, Seager, R. 2013. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493:389392. doi: 10.1038/nature11785.CrossRefGoogle ScholarPubMed
Trachsel, M, Telford, RJ. 2017. All age–depth models are wrong, but are getting better. Holocene 27: 860869. doi: 10.1177/0959683616675939.CrossRefGoogle Scholar
Tunno, I, Zimmerman, SRH, Brown, TA, Hassel, C.A. 2021. An Improved method for extracting, sorting, and AMS dating of pollen concentrates from lake sediment. Front. Ecol. Evol. 9. doi: 10.3389/fevo.2021.668676.CrossRefGoogle Scholar
Turney, C, Becerra-Valdivia, L, Sookdeo, A, Thomas, Z.A, Palmer, J, Haines, H.A, Cadd, H, Wacker, L, Baker, A, Andersen, MS, Jacobsen, G, Meredith, K, Chinu, K, Bollhalder, S, Marjo, C. 2021. Radiocarbon protocols and first intercomparison results from the Chronos 14-Carbon Cycle Facility, University of New South Wales, Sydney, Australia. Radiocarbon 63:10031023. doi: 10.1017/RDC.2021.23.CrossRefGoogle Scholar
Tyler, JJ, Mills, K, Barr, C, Sniderman, JMK, Gell, PA, Karoly, DJ. 2015. Identifying coherent patterns of environmental change between multiple, multivariate records: an application to four 1000-year diatom records from Victoria, Australia. Quat. Sci. Rev. 119:94105. doi: 10.1016/j.quascirev.2015.04.010.CrossRefGoogle Scholar
Vandergoes, MJ, Prior, CA. 2003. AMS dating of pollen concentrates - A methodological study of late quaternary sediments from South Westland, New Zealand. Radiocarbon 45:479491. doi: 10.1017/S0033822200032823.CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, HA, Vockenhuber, C. 2010. Micadas: routine and high-precision radiocarbon dating. Radiocarbon 52: 252262. doi: 10.1017/S0033822200045288.CrossRefGoogle Scholar
Wohlfarth, B, Skog, G, Possnert, G, Holmquist, B. 1998. Pitfalls in the AMS radiocarbon-dating of terrestrial macrofossils. J. Quat. Sci. 13:137145. doi: 10.1002/(SICI)1099-1417(199803/04)13:2<137::AID-JQS352>3.0.CO;2-6.3.0.CO;2-6>CrossRefGoogle Scholar
Wüst, RAJ, Jacobsen, GE, van der Gaast, H, Smith, AM. 2008. Comparison of radiocarbon ages from different organic fractions in tropical peat cores: Insights from Kalimantan, Indonesia. Radiocarbon 50:359372. doi: 10.1017/S0033822200053492.CrossRefGoogle Scholar
Yaalon, DH, Kalmar, D. 1978. Dynamics of cracking and swelling clay soils: displacement of skeletal grains, optimum depth of slickensides, and rate of intra-pedonic turbation. Earth Surf Process. 3, 3142. doi: 10.1002/esp.3290030104.CrossRefGoogle Scholar
Zhang, JF, Xu, B, Turner, F, Zhou, L, Gao, P, , X, Nesje, A. 2017. Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology 45:359362. doi: 10.1130/G38690.1.CrossRefGoogle Scholar
Zimmerman, SRH, Brown, TA, Hassel, C, Heck, J. 2019. Testing pollen sorted by flow cytometry as the basis for high-resolution lacustrine chronologies. Radiocarbon 61:359374. doi: 10.1017/RDC.2018.89.CrossRefGoogle Scholar
Supplementary material: File

Cadd et al. supplementary material

Cadd et al. supplementary material

Download Cadd et al. supplementary material(File)
File 543 KB