Hostname: page-component-5f745c7db-szhh2 Total loading time: 0 Render date: 2025-01-06T13:18:01.527Z Has data issue: true hasContentIssue false

ANALYSIS OF RADIOCARBON DISTRIBUTION IN THE EUTROPHIC LAKE FISH ASSEMBLAGE USING STABLE C, N, S ISOTOPES

Published online by Cambridge University Press:  10 November 2022

Rūta Barisevičiūtė*
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Vytautas Rakauskas
Affiliation:
Laboratory of Fish Ecology, State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT- 08412, Lithuania
Tomas Virbickas
Affiliation:
Laboratory of Fish Ecology, State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT- 08412, Lithuania
Žilvinas Ežerinskis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Justina Šapolaitė
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
Vidmantas Remeikis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, LT-02300 Vilnius, Lithuania
*
*Corresponding author. Email: [email protected]

Abstract

The carbon isotope distribution and its relationship with stable N and S isotope ratio values were investigated within a fish assemblage from the shallow lake Tapeliai, which is constantly affected by inflows of 14C depleted water from the surrounding watershed mires. The “conventional” radiocarbon age within the fish from this lake varied from 119 to 693 yr. The 14C/12C and δ13C values correlated significantly (r=0.85 p<0.001), which is not typical in lakes of the temperate zone. There were no observed statistical differences (Kruskal–Wallis ANOVA tests) in the 14C/12C values among different fish species. The radiocarbon dating values and 15N/14N measurements did not correlate. The radiocarbon measurement values also did not correlate with δ34S, however, the distribution of these isotopes in carp (119 yr and 1.3‰, respectively) and roach (344 yr and 4.5‰, respectively) indicated that fish may include allochthonous food sources in their diet.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barisevičiute, R, Maceika, E, Ežerinskis, Ž, Mažeika, J, Butkus, L, Šapolaite, J, Garbaras, A, Paškauskas, R, Jefanova, O, Karosiene, J, et al. 2019. Tracing carbon isotope variations in lake sediments caused by environmental factors during the past century: a case study of Lake Tapeliai, Lithuania. Radiocarbon 61(4):885903.CrossRefGoogle Scholar
Bitinas, A. 2012. New insights into the last deglaciation of the south-eastern flank of the Scandinavian Ice Sheet. Quaternary Science Reviews 44:6980.CrossRefGoogle Scholar
Bitinas, A, Karmaziene, D, Jusiene, A. 2004. Glaciolacustrine Kame Terraces as an indicator of conditions of deglaciation in Lithuania during the Last Glaciation. Sedimentary Geology 165(3–4):285294.Google Scholar
Bocherens, H, Drucker, DG, Taubald, H. 2011. Preservation of bone collagen sulphur isotopic compositions in an Early Holocene river-bank archaeological site. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):3238.CrossRefGoogle Scholar
Croisetière, L, Hare, L, Tessier, A, Cabana, G. 2009. Sulphur stable isotopes can distinguish trophic dependence on sediments and plankton in Boreal lakes. Freshwater Biology 54(5):10061015.Google Scholar
DeNiro, MJ, Epstein, S. 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197(4300):261263.Google ScholarPubMed
Donahue, MA, Werne, JP, Meile, C, Lyons, TW. 2008. modeling sulfur isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin. Geochimica et Cosmochimica Acta 72(9):22872297.Google Scholar
Eriksson Stenström, K, Skog, G, Geogiadou, E, Genberg, J, Johansson, A. 2011. A guide to radiocarbon units and calculations. LUNDFD6/(NFFR-3111). Lund University. 17 p.Google Scholar
Esmeijer-Liu, AJ, Kürschner, WM, Lotter, AF, Verhoeven, JTA, Goslar, T. 2012. Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition. Water, Air, and Soil Pollution 223(5):20072022.Google Scholar
Ežerinskis, Ž, Šapolaite, J, Pabedinskas, A, Juodis, L, Garbaras, A, Maceika, E, Druteikiene, R, Lukauskas, D, Remeikis, V. 2018. Annual variations of 14C concentration in the tree rings in the vicinity of Ignalina Nuclear Power Plant. Radiocarbon 60(4):12271236.CrossRefGoogle Scholar
France, RL. 1995. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography 40(7):13101313.Google Scholar
Froese, R, Pauly, D, editors. 2022. FishBase. World Wide Web electronic publication. www.fishbase.org, version (01/2022).Google Scholar
Fry, B. 1986a. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New York State. Limnology and Oceanography 31(1):7988.Google ScholarPubMed
Fry, B. 1986b. Stable sulfur isotopic distributions and sulfate reduction in lake sediments of the Adirondack Mountains, New York. Biogeochemistry 2(4):329343.CrossRefGoogle Scholar
Hjelm, J, Persson, L, Christensen, B. 2000. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 122(2):190199.CrossRefGoogle ScholarPubMed
Hou, J, D’Andrea, WJ, Liu, Z. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews 48:6779.CrossRefGoogle Scholar
Kaplan, IR, Rittenberg, SC. 1964. Microbiological fractionation of sulphur isotopes. Journal of General Microbiology 34:195212.CrossRefGoogle ScholarPubMed
Karube, Z, Okada, N, Tayasu, I. 2012. Sulfur stable isotope signature identifies the source of reduced sulfur in benthic communities in macrophyte zones of Lake Biwa, Japan. Limnology 13(3): 269280.Google Scholar
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):13061316.CrossRefGoogle Scholar
Keaveney, EM, Reimer, PJ, Foy, RH. 2015. Young, old, and weathered carbon—Part 2: using radiocarbon and stable isotopes to identify terrestrial carbon support of the food web in an alkaline, humic lake. Radiocarbon 57(3):425438.CrossRefGoogle Scholar
Lammens, EHRR, Hoogenboezem, W. 1991. Diets and feeding behaviour. In: Winfield, IJ, Nelson, JS. editors. Cyprinid fishes: systematics, biology and explotation (Fish & Fisheries Series, 3), 1st ed. London: Chapman and Hall. 668 p.Google Scholar
Li, Y, Qiang, M, Jin, Y, Liu, L, Zhou, A, Zhang, J. 2018. Influence of aquatic plant photosynthesis on the reservoir effect of Genggahai Lake, northeastern Qinghai-Tibetan Plateau. Radiocarbon 60(2):561569.CrossRefGoogle Scholar
Maberly, SC. 1985. Photosynthesis by Fontinalis antipyretica: I. Interaction between photon irradiance, concentration of carbon dioxyde and temperature. New Phytologist 100(2):127140.CrossRefGoogle Scholar
Maksymowska, D, Richard, P, Piekarek-Jankowska, H, Riera, P. 2000. Chemical and isotopic composition of the organic matter sources in the Gulf of Gdansk (southern Baltic Sea). Estuarine, Coastal and Shelf Science 51(5):585598.CrossRefGoogle Scholar
Martin, S, Proulx, I, Hare, L. 2008. Explaining metal concentrations in sympatric chironomus species. Limnology and Oceanography 53(2):411419.CrossRefGoogle Scholar
McCutchan, JH, Lewis, WM, Kendall, C, McGrath, CC. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2):378390.Google Scholar
Mischke, S, Weynell, M, Zhang, C, Wiechert, U. 2013. Spatial variability of 14C reservoir effects in Tibetan plateau lakes. Quaternary International 313–314:147155.CrossRefGoogle Scholar
Moisejenkova, A, Tarasiuk, N, Koviazina, E, Maceika, E, Girgždys, A. 2012. 137Cs in Lake Tapeliai, Lithuania. Lithuanian Journal of Physics 52(3):238252.CrossRefGoogle Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1(1): 124.Google Scholar
Post, DM. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703718.CrossRefGoogle Scholar
Post, DM, Layman, CA, Arrington, DA, Takimoto, G, Quattrochi, J, Montaña, CG. 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152(1):179189.CrossRefGoogle Scholar
Proulx, I, Hare, L. 2014. Differences in feeding behaviour among chironomus species revealed by measurements of sulphur stable isotopes and cadmium in larvae. Freshwater Biology 59(1):7386.Google Scholar
Richards, MP, Fuller, BT, Sponheimer, M, Robinson, T, Ayliffe, L. 2003. Sulphur isotopes in palaeodietary studies: a review and results from a controlled feeding experiment. International Journal of Osteoarchaeology 13:3745.CrossRefGoogle Scholar
Savoye, N, Aminot, A, Tréguer, P, Fontugne, M, Naulet, N, Kérouel, R. 2003. Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Marine Ecology Progress Series 255:2741.CrossRefGoogle Scholar
Sayle, KL, Cook, GT, Ascough, PL, Gestsdóttir, H, Hamilton, WD, McGovern, TH. 2014. Utilization of δ13C, δ15N, and δ 34S analyses to understand 14C dating anomalies within a Late Viking Age community in northeast Iceland. Radiocarbon 56(2):811821.CrossRefGoogle Scholar
Sayle, KL, Hamilton, WD, Gestsdóttir, H, Cook, GT. 2016. Modelling Lake Mývatn’s freshwater reservoir effect: utilisation of the statistical program FRUITS to assist in the re-interpretation of radiocarbon dates from a cemetery at Hofstaðir, North-East Iceland. Quaternary Geochronology 36:111.Google Scholar
Schulting, RJ, Ramsey, CB, Bazaliiskii, VI, Goriunova, OI, Weber, A. 2014. Freshwater reservoir offsets investigated through paired human-faunal 14C dating and stable carbon and nitrogen isotope analysis at Lake Baikal, Siberia. Radiocarbon 56(3):9911008.CrossRefGoogle Scholar
Tarasiuk, N, Moisejenkova, A, Koviazina, E, Karpicz, R, Astrauskiene, N. 2009. On the radiocesium behavior in a small humic lake (Lithuania). Nukleonika 54(3):211220.Google Scholar
Thode, HG. 1991. Sulphur isotopes in nature and the environment: an overview. In: Krouse HR, Grinenko VA, editors. Stable isotopes: natural and anthropogenic sulphur in the environment. Scope 43:1–26.Google Scholar
Thoresson, G. 1993. Guidelines for coastal monitoring: fishery biology. Kustrapport 1. National Board of Fisheries, Institute of Coastal Research, Öregrund, Sweden.Google Scholar
Vander, MJ, Rasmussen, JB. 2001. Variation in studies δ15N andδ13C trophic fractionation: implications for aquatic food web. Limnology and Oceanography 46:20612066.Google Scholar
Virbickas, T. 2018. Fish assemblage structure, state of fish resources and fisheries recommendations of Lake Tapeliai. Internal report. Environmental Protection Agency. 7 p. In Lithuanian.Google Scholar
Wang, J, Chen, G, Kang, W, Hu, K, Wang, L. 2019. Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of southwest China. Water Research 148:162175.CrossRefGoogle Scholar
Xie, S, Nott, CJ, Avsejs, LA, Maddy, D, Chambers, FM, Evershed, RP. 2004. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochimica et Cosmochimica Acta 68(13):28492862.Google Scholar
Supplementary material: Image

Barisevičiūtė et al. supplementary material

Barisevičiūtė et al. supplementary material 1

Download Barisevičiūtė et al. supplementary material(Image)
Image 156.4 KB
Supplementary material: Image

Barisevičiūtė et al. supplementary material

Barisevičiūtė et al. supplementary material 2

Download Barisevičiūtė et al. supplementary material(Image)
Image 99.8 KB