Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T02:38:53.063Z Has data issue: false hasContentIssue false

An 11,000-Year German Oak and Pine Dendrochronology for Radiocarbon Calibration

Published online by Cambridge University Press:  18 July 2016

Bernd Becker*
Affiliation:
Institut für Botanik, Universität Hohenheim, D-7000 Stuttgart 70 Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sequences of dendrodated tree rings provide ideal sources for radiocarbon calibration. The wood structure of trees consists of continuous series of annual growth layers, the carbon content of which can be 14C-dated and calibrated to calendar yr. The cellulose and lignin of trees deposited in river gravels or peat-bog sediments below the water table are often very well preserved, even after several millennia. Such tree-trunk deposits are well protected from contamination by younger or older organic materials. Further, the physical and chemical structure of wood allows a strong chemical pretreatment of samples for 14C analysis.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Baillie, M. G. L. and Pilcher, J. R. 1982 A simple cross-dating program for tree-ring research. Tree-Ring Bulletin 33: 714.Google Scholar
Becker, B. 1982 Dendrochronologie und Paläoökologie subfossiler Baumstämme aus Flußablagerungen. Mitteilungen der Kommission für Quartärforschung der Österreichischen Akademie der Wissenschaften 5: 120 P.Google Scholar
Becker, B. 1992 The history of dendrochronology and radiocarbon calibration. in Taylor, R. E., Long, A. and Kra, R. S., eds., Radiocarbon After Four Decades: An Interdiscipinary Perspective. New York, Springer Verlag: 3449.Google Scholar
Becker, B., Billamboz, A., Egger, H., Gassmann, P., Orcel, A., Orcel, C., and Ruoff, U. 1985 Dendrochronologie in der Ur- und Frühgeschichte. Antiqua 11: 168.Google Scholar
Becker, B. and Kromer, B. 1991 Dendrochronology and radiocarbon calibration of the Early Holocene. in Barton, N., Roberts, A. and Roe, D. A., eds., The Late Glacial in northwest Europe. CBA Research Report 77: 2225.Google Scholar
Becker, B., Kromer, B. and Trimborn, P. 1991 A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary. Nature 3: 647649.Google Scholar
Becker, B. and Schmidt, B. 1990 Extension of the European oak chronology to the past 9924 years. in Waterbolk, H. T. and Mook, W. G., eds., Proceedings of the Second International Symposium, Archaeology and 14C. PACT 29: 3750.Google Scholar
Ferguson, C. W. 1969 A 7104-year annual tree-ring chronology for bristlecone pine, Pinus aristata, from the White Mountains, California. Tree-Ring Bulletin 29(3-4): 129.Google Scholar
Kromer, B. and Becker, B. 1992 Tree-ring 14C calibration at 10.000 BP. In: Bard, E. and Broecker, W. S., eds., The Last Deglacation: Absolute and Radiocarbon Chronologies, NATO ASI Series I-2. Heidelberg, Springer Verlag: 311.Google Scholar
Leuschner, H. H. and Delorme, A. 1988 Tree-ring work in Göttingen. Absolute oak chronologies back to 6255 BC: PACT 22: 123132.Google Scholar
Linick, T. W., Suess, H. E. and Becker, B. 1985 La Jolla measurements of radiocarbon on South German oak tree-ring chronologies. Radiocarbon 27(1): 2030.Google Scholar
Pilcher, J. R., Baillie, M. G. L., Schmidt, B. and Becker, B. 1984 A 7,272 year tree-ring chronology for western Europe. Nature 312: 150152.Google Scholar