Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-18T19:30:05.508Z Has data issue: false hasContentIssue false

AMS-14C Chronology of a Lacustrine Sequence from Lake Langano (Main Ethiopian Rift): Correction and Validation Steps in Relation with Volcanism, Lake Water and Carbon Balances

Published online by Cambridge University Press:  18 July 2016

Elisabeth Gibert*
Affiliation:
FRE 2566-ORSAYTERRE, CNRS-UPS, Equipe ≪Hydrologie, Paléohydrologie et Paléoenvironnement≫, Université Paris-Sud, Bâtiment 504, F-91405 Orsay cedex, France
Yves Travi
Affiliation:
Laboratoire d'Hydrogéologie, Département de Géologie, Faculté des Sciences d'Avignon, 33 rue Louis Pasteur, F-84000 Avignon, France
Marc Massault
Affiliation:
FRE 2566-ORSAYTERRE, CNRS-UPS, Equipe ≪Hydrologie, Paléohydrologie et Paléoenvironnement≫, Université Paris-Sud, Bâtiment 504, F-91405 Orsay cedex, France
Jean-Jacques Tiercelin
Affiliation:
UMR 6538 “Domaines Océaniques”, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, F-29280 Plouzané, France
Tesfaye Chernet
Affiliation:
Laboratoire d'Hydrogéologie, Département de Géologie, Faculté des Sciences d'Avignon, 33 rue Louis Pasteur, F-84000 Avignon, France
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Located in the Ziway-Shala Basin of the Main Ethiopian Rift, Lake Langano is part of an asymmetric half-graben, defined by a series of north-northeast-trending faults in the tectonically active zone of the rift. A 15-m deep succession of organic homogeneous muds, silts, bioclastic sands, and pyroclastic layers was cored in 1994. The definition of a certified radiocarbon chronology on these deposits required the indispensable establishment of modern hydrological and geochemical balances. The isotopic contents of the total dissolved inorganic carbon (TDIC) of surface water clearly show the influence of a deep CO2 rising along the main fault crossing the lake basin. The 5.8 pMC disequilibrium existing in 1994 with the atmosphere likely produces the aging of authigenic materials developing at the lake surface. However, with a mean residence time of ~15 years, this apparent 14C aging of Lake Langano water still integrates the 14C produced by the nuclear tests in the 1960s. Reconstructing the natural 14C activity of the lake TDIC allows for the quantification of the deep CO2 influence, and for the correction of AMS-14C datings performed along the core. The correction of the AMS-14C chronology defined on Lake Langano allows for a better understanding of paleohydrological changes at a regional scale for at least the last 12,700 cal BP.

Type
Articles
Copyright
Copyright © 2002 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Bonnefille, R, Robert, C, Delibrias, G, Elenga, C, Herbin, J-P, Lézine, AM, Perinet, G, Tiercelin, J-J, 1986. Palaeoenvironment of Lake Abijata, Ethiopia, during the past 2000 years. In: Frostick, LE, Reid, I, Renaut, RW, Tiercelin, J-J, editors. Sedimentation in African rifts. Geological Society of London, Spec. Publ. 25:253–65.Google Scholar
Bottinga, Y. 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-CO2-graphite-methane-hydrogen and water vapor. Geochemica Cosmochemica Acta 33:4964.Google Scholar
Bruns, M, Levin, I, Munnich, KO, Hubbertein, HW, Filipakis, S. 1980. Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22(2):532–6.Google Scholar
Chernet, T. 1982. Hydrogeology of the Lakes Region, Ethiopia. In: Ethiopian Institute of Geological Surveys, editors. Ministry of Mines and Energy. Mem. 7:97 p.Google Scholar
Chernet, T. 1998. Etude des méchanismes de minéralisation en fluorure et éléments associés de la région des lacs du Rift Ethiopien. Thèse de Doctorat. Université d'Avignon. 203 p. In French. Google Scholar
Chernet, T, Travi, Y, Valles, V. 2001. Mechanism of degradation of the quality of natural water in the Lakes Region of the Ethiopian Rift Valley. Water Research 35(12):2819–32.Google Scholar
Colman, SM, Jones, GA, Rubin, M, King, JW, Peck, JA, Orem, WH, 1996. AMS radiocarbon analyses from Lake Baïkal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quaternary Geochronology (Quaternary Science Review) 15.Google Scholar
Fontes, J-Ch, Gasse, F. 1991 PALHYDAF (PALaeoHYdrology in AFrica: objectives, methods and major results). Palaeogeography Palaeoclimatology, Palaeoecology 84:191215.CrossRefGoogle Scholar
Fontes, J-Ch, Mélières, F, Gibert, E, Qing, Liu, Gasse, F. 1993. Stable isotope and radiocarbon balances of two tibetan lakes (Sumxi Co and Longmu Co) from 13,000 yr BP Quaternary Science Review 12:875–87.Google Scholar
Fontes, J-Ch, Gasse, F, Gibert, E. 1996. Holocene environmental changes in Bangong basin (western Tibet). Part 1: modern setting, mineralogy, stable isotope of carbonates and radiometric chronology. Palaeogeography, Palaeoclimatology, Palaeoecology 120:2547.Google Scholar
Friedman, I, O'Niel, JR. 1977. Compilation of stable isotopic fractionation factors of geochemical interest. In: Data of geochemistry. 6th edition. U.S. Geological Survey Publisher. Professional Paper, 440 KK. 106 p.Google Scholar
Gasse, F, Street, FA. 1978. Late Quaternary lake-level fluctuations and environments of the northern Rift Valley and Afar region (Ethiopia and Djibouti). Palaeogeography, Palaeoclimatology, Palaeoecology 25:145–50.Google Scholar
Gasse, F, Arnold, M, Fontes, J-Ch, Fort, M, Gibert, E, Huc, A, Yuanfang, L, Liu, Q, Melieres, F, Van Campo, E, Fubao, W, Qingsong, Z. 1990. A 13,000 yr climatic record from western Tibet (Xizang, China). Nature 353:742–5.Google Scholar
Gasse, F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Review 19:189211.Google Scholar
Genty, D, Massault, M. 1997. Bomb 14C recoreded in laminated speleothems: dead carbon proportion calculation. Radiocarbon 39(1):3348.Google Scholar
Genty, D, Massault, M. 1999. Carbon transfer dynamics from bomb-14C and 813C time series of a laminated stalagmite from SW France – modelling and comparison with other stalagmite records. Geochimica Cosmochimica Acta 63(10):1537–48.Google Scholar
Geyh, MA, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921–31.Google Scholar
Gibert, E, Travi, Y, Massault, M, Chernet, T, Barbecot, F, Laggoun-Defarge, F. 1999. Comparison between carbonate and organic AMS 14C ages in Lake Abiyata sediments (Ethiopia): hydrochemistry and palaeoenvironmental implications. Radiocarbon 41(3):251–66.Google Scholar
Gillespie, R, Street–Perrott, FA, Switsur, R. 1983. Postglacial arid episodes in Ethiopia have implications for climate prediction. Nature 306:680–3.Google Scholar
Jeudy, V. 1995. Approche morphostructurale et sédimentaire du bassin du lac Langano, Rift Ethiopien, pour le Pléistocène supérieur. Projet ERICA. DEA, Université de Bretagne Occidentale.Google Scholar
Johnson, TC. 1996. Sedimentary processes and signals of past climatic change in the large lakes of the East African Rift Valley. In: Johnson, TC, Odada, E, editors. The limnology, climatology and paleoclimatology of the east African lakes. Amsterdam: Gordon and Breach. p 367412.Google Scholar
Kromer, B, Becker, B. 1993. German oak and pine 14C calibration, 7200-9439 BC. Radiocarbon 35(1):125–35.Google Scholar
Le Turdu, C, Tiercelin, J-J, Gibert, E, Travi, Y, Lezzar, KE, Richert, J-P, Massault, M, Gasse, F, Bonnefille, R, Decobert, M, Gensous, B, Jeudy, V, Endale, T, Umer, M, Martens, K, Atnafu, B, Chernet, T, Williamson, D, Taïeb, M. 1999. The Ziway-Shala lake basin system, Main Ethiopian Rift: influence of volcanism, tectonics and climatic forcing on basin formation and sedimentation. Palaeogeography, Palaeoclimatology, Palaeoecology 150:135–77.CrossRefGoogle Scholar
Levin, I, Bošsinger, R, Bonani, G, Francey, RJ, Kromer, B, Munnich, KO, Suter, M, Trivett, NBA, Wölfi, W. 1992. Radiocarbon in atmospheric carbon dioxide and methane: global distribution and trends. In: Taylor, RE, Long, A, Kra, RS, editors. Radiocarbon after four decades. New York: Springer-Verlag. p 503–18.Google Scholar
Levin, I, Graul, R, Trivett, NBA. 1995. Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B:2334.Google Scholar
Levin, I, Kromer, B. 1998. Twenty years of high precision atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.Google Scholar
Libby, WF, Anderson, EC, Arnold, JR. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109:227–8.Google Scholar
Mohammed, MU. 1992. Paléoenvironnement et paléoclimatologie des derniers millénaires en Ethiopie. Contribution palynologique. Thèse de Doctorat, University d'Aix–Marseille III. 219 p. In French.Google Scholar
Mohammed, MU, Bonnefille, R. 1991. The recent history of vegetation and climate around lake Langano (Ethiopia). Palaeoecology of Africa 22:267–80.Google Scholar
Nydal, R, Losveth, K. 1983. Tracing bomb 14C in the atmosphere 1962-1980. Journal of Geophys. Research 88:3621–42.Google Scholar
Pourriot, R, Meybeck, M. 1995. Limnologie générale. Eds Masson, Paris (France). 956 p.Google Scholar
Rafter, TA, Fergusson, GJ. 1957. Atom bomb effect - recent increase of Carbon-14 content of the atmosphere and biosphere. Science 126:557–8.Google Scholar
Rozanski, K, Araguas-Araguas, L, Gonfiantini, R. 1996. Isotope patterns of precipitation in the east African region. In: Johnson, TC, Odada, E, editors. The limnology, climatology and paleoclimatology of the east African lakes. The Netherlands: Gordon and Breach. p 7993.Google Scholar
Saliège, JF, Fontes, J-Ch. 1984. Essai de détermination expérimentale du fractionnement des isotopes 13C et 14C du carbone au cours de processus naturels. International Journal of Applied Radiation and Isotopes 35(1):5562.Google Scholar
Street, FA. 1981. Chronology of late Pleistocene and Holocene lake-level fluctuations, Ziway-Shala Basin, Ethiopia. In: Leakey, RE, Ogot, BA, editors. Proceedings of the 8th Panafrican Congress of Prehistory and Quaternary Studies. 5–10 Sept 1977. Nairobi, Kenya. p 143–6.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP Radiocarbon 40(3):1041–83.Google Scholar
Scripps Institution of Oceanography. 1977. Isotopic geochemistry and hydrology of geothermal water in the Ethiopian Rift valley. Isotope Laboratory, University of California, SIO Reference 77–14. 140 p.Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415–7.Google Scholar
Travi, Y, Chernet, T, Gibert, E. 1997. Study of hydrological behaviour of the Lake Region in the Ethiopian Rift, using hydrological, hydrochemical and isotopic data: palaeohydrological implications. Colloque “Volcanisme, Rifting et Paléoclimats dans le Rift Ethiopien et la Dépression de l'Afar”. Addis-Abeba, Ethiopia. p 36.Google Scholar
Vallet-Coulomb, C, Legesse, D, Gasse, F, Travi, Y, Chernet, T. 2000. Lake evaporation estimates in tropical Africa from limited meteorological data. Journal of Hydrology 245:118.Google Scholar
WMO/IAEA/GNIP Network. 1998. Statistical treatment of data on environmental isotopes in precipitation. In: IAEA (Vienna, Austria)/WMO, editors. World survey of global network for isotopes in precipitation. Nr 311.Google Scholar