Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T06:34:44.659Z Has data issue: false hasContentIssue false

AMS Radiocarbon and Varve Chronology from the Annually Laminated Sediment Record of Lake Meerfelder Maar, Germany

Published online by Cambridge University Press:  18 July 2016

Achim Brauer
Affiliation:
GeoForschungsZentrum (GFZ), Projektbereich 3.3, Sedimente und Beckenbildung, Telegrafenberg, D-14473 Potsdam, Germany. Email: [email protected]
Christoph Endres
Affiliation:
GeoForschungsZentrum (GFZ), Projektbereich 3.3, Sedimente und Beckenbildung, Telegrafenberg, D-14473 Potsdam, Germany. Email: [email protected]
Bernd Zolitschka
Affiliation:
GeoForschungsZentrum (GFZ), Projektbereich 3.3, Sedimente und Beckenbildung, Telegrafenberg, D-14473 Potsdam, Germany. Email: [email protected]
Jörg FW Negendank
Affiliation:
GeoForschungsZentrum (GFZ), Projektbereich 3.3, Sedimente und Beckenbildung, Telegrafenberg, D-14473 Potsdam, Germany. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Holocene varve chronology of annually laminated sediment sequences from Lake Meerfelder Maar agree for most of the record with dendro-calibrated accelerator mass spectronomy radiocarbon dates from the same site. Only between 9710 and 9950 cal BP does an offset of 240 yr appear between both data sets. At this position, a micro-disturbance in the varve succession has been detected by thin section analyses and was quantified in terms of missing varves. A comparison with the nearby record from Lake Holzmaar, as well providing high resolution AMS 14C and varve chronologies, revealed that such gaps (ca. 2% in time for the entire Holocene) are exceptional for these long-varved maar lake records. Moreover, since sections of missing years appear for both profiles at different stratigraphic positions, a combination of both the Meerfelder Maar and Holzmaar records enables us to bridge erroneous zones in varve chronologies. This confirms the high potential of two long-varved records in close vicinity to each other for the elimination of dating errors and for increasing chronological precision at a time resolution that is normally regarded as within the counting errors. Late Glacial varve and 14C data beyond the dendro-calibration from Meerfelder Maar and their tentative tele-connections to other high resolution data sets reveal unexplained age discrepancies in the calendar year time scale of about 200 years.

Type
Varve Chronologies
Copyright
Copyright © 2000 The Arizona Board of Regents on behalf of the University of Arizona 

References

Alley, RB, Meese, DA, Shuman, CA, Gow, AJ, Taylor, KC, Grootes, PM, White, JWC, Ram, M, Waddington, ED, Mayewski, PA, Zielinski, GA. 1993. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–9.Google Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnerat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3): 1085–92.Google Scholar
Bonani, G, Beer, J, Hofmann, H, Synal, HA, Suter, M, Wölfli, W, Pfleiderer, C, Junghans, C, Münnich, KO. 1987. Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics B29:8790.Google Scholar
Björck, S, Kromer, B, Johnsen, S, Bennike, O, Hammer-lund, D, Lemdahl, G, Possnert, G, Rasmussen, TL, Wohlfarth, B, Hammer, CU, Spurk, M. 1996. Synchronised terrestrial-atmospheric deglacial records around the North Atlantic. Science 274:11551160.CrossRefGoogle ScholarPubMed
Björck, S, Walker, MJC, Cwynar, LC, Johnsen, S, Knudsen, KL, Lowe, JJ, Wohlfarth, B, INTIMATE Members. 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13(4):283–92.Google Scholar
Brauer, A, Hajdas, I, Negendank, JFW, Vos, H, Rein, B and Zolitschka, B. 1994. Warvenchronologie. Eine Methode zur absoluten Datierung und Rekonstruktion kurzer und mittlerer solarer Periodizitäten. Geowissenschaften 12:325–32.Google Scholar
Brauer, A, Endres, C, Günter, C, Litt, T, Stebich, M, Negendank, JFW. 1999a. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quaternary Science Reviews 18:321329.Google Scholar
Brauer, A, Endres, C, Negendank, JFW. 1999b. Late Glacial calendar year chronology based on annually laminated lake sediments from Lake Meerfelder Maar, Germany. Quaternary International 61:1725.Google Scholar
Büchel, G, Krawczyk, E. 1986. Zur Genese der Dauner Maare im Vulkanfeld Westeifel. Mainzer Geowissenschaftliche Mitteilungen 15:219–38.Google Scholar
Friedrich, M, Kromer, B, Spurk, M, Hofmann, J, Kaiser, KF. 1999. Paleo-environment and radiocarbon calibration as derived from Late Glacial/Early Holocene tree-ring chronologies. Quaternary International 61:2739.Google Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, M.F., Ralska-Jasiewiczowa, M, Rozanski, K, Tisnerat, N, Walanus, A, Wicik, B, Wieckowski, K. 1995. High concentration of atmosphere-rich 14C during the Younger Dryas cold episode. Nature 377:414–17.Google Scholar
Goslar, T, Madry, W. 1998. Using the Bayesian method to study the precision of dating by the “wiggle matching” procedure. Radiocarbon 40(1):551–60.Google Scholar
Goslar, T, Arnold, M, Tisnerat-Laborde, N, Hatte, C, Paterne, M, Ralska-Jasiewiczowa, M. 2000. Radiocarbon calibration by means of varves versus 14C ages of terrestrial macrofossils from Lake Gościąż and Lake Perespilno, Poland. Radiocarbon. This issue.Google Scholar
Gulliksen, S, Birks, HH, Possnert, G, Mangerud, J. 1998. A calendar age estimate of the Younger Dryas-Holocene boundary at Kråkenes, western Norway. The Holocene 8(3):249–59.Google Scholar
Hajdas, I. 1993. Extension of the radiocarbon calibration curve by AMS dating of laminated sediments of lake Soppensee and lake Holzmaar. PhD. Thesis, ETH Zürich. 147 p.Google Scholar
Hajdas, I, Ivy, SD, Beer, J, Bonani, G, Imboden, D, Lotter, AF, Sturm, M, Suter, M. 1993. AMS radiocarbon dating and varve chronology of lake Soppensee: 6000–12000 14C years BP Climate Dynamics 9:107–16.Google Scholar
Hajdas, I, Zolitschka, B, Ivy-Ochs, SD, Beer, J, Bonani, G, Leroy, SAG, Negendank, JFW, Ramrath, M, Suter, M. 1995a. AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany. Quaternary Science Reviews 14:37143.Google Scholar
Hajdas, I, Ivy-Ochs, SD, Bonani, G, Lotter, AF, Zolitschka, B, Schlüchter, C. 1995b. Radiocarbon age of the Laacher See Tephra: 11,230 + 40 BP. Radiocarbon 37(2): 149–54.CrossRefGoogle Scholar
Hajdas, I, Bonani, G, Zolitschka, B. 2000. Radiocarbon dating of varve chronologies: Soppensee and Holzmaar after ten years. Radiocarbon. This issue.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391:65–8.Google Scholar
Irion, G, Negendank, JFW, editors. 1984. Das Meerfelder Maar. Courier Forschungsinstitut Senckenberg 65. Frankfurt A.M. 101 p.Google Scholar
Johnsen, SJ, Dahl-Jensen, D, Dansgaard, W, Gundestrup, N. 1995. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus 47B:624629.Google Scholar
Kitagawa, H, van der Plicht, J. 1998a. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the 14C calibration curve. Radiocarbon 40(1):505–15.Google Scholar
Kitagawa, H, van der Plicht, J. 1998b. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science, 279:1187–90.Google Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon. This issue.Google Scholar
Kromer, B, Spurk, M. 1998. Revision and tentative extension of the tree-ring based 14C calibration 9200 to 11,870 cal BP. Radiocarbon 40(3):1117–25.Google Scholar
Litt, T, Stebich, M. 1999. Bio- and chronostratigraphy of the Late Glacial in the Eifel region, Germany. Quaternary International 61:516.Google Scholar
Nadeau, MJ, Schleicher, M, Gottdang, A, Mouse, DJW, Grootes, PM. 1996. Performances and characteristics of the Leibniz-Labor AMS facility mass spectrometer. Radiocarbon 38(1):94.Google Scholar
Negendank, JFW. 1989. Pleistozäne und holozäne Maarsedimente der Eifel. Zeitschrift der Deutschen Geologischen Gesellschaft 140:1324.Google Scholar
Negendank, JFW, Brauer, A, Zolitschka, B. 1990. Die Eifelmaare als erdgeschichtliche Fallen und Quellen zur Rekonstruktion des Paläoenvironments. Mainzer geowissenschaftliche Mitteilungen 19:235–65.Google Scholar
Olsson, IU. 1986. Radiometric dating. In: Berglund, BE, editor. Handbook of Holocene palaeoecology and palaeohydrology. Chichester: John Wiley & Sons. p 273312.Google Scholar
Olsson, IU. 1991. Accuracy and precision in sediment chronology. Hydrobiology 214:2534.Google Scholar
Stuiver, M, Reimer, PJ. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35(1):215–30.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–84.CrossRefGoogle Scholar
van den Bogaard, P, Schmincke, HU. 1985. Laacher See Tephra: a widespread isochronous late Quaternary tephra layer in central and northern Europe. Geological Society of America Bulletin 96:1554–71.Google Scholar
van den Bogaard, P. 1995. 40Ar/39 Ar ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): chronostratigraphic and petrological significance. Earth and Planetary Science Letters 133:163–74.Google Scholar
Wohlfarth, B, Björck, S, Possnert, G. 1995. The Swedish time scale: a potential calibration tool for the radiocarbon time scale during the Late Weichselian. Radiocarbon 37(2):347–59.CrossRefGoogle Scholar
Wohlfarth, B, Possnert, G. 2000. AMS radiocarbon measurements from the Swedish varved corals. Radiocarbon. This issue.Google Scholar
Zbinden, H, Andrée, M, Oeschger, H, Ammann, B, Lotter, A, Bonani, G, Wölfli, W 1989. Atmospheric radiocarbon at the end of the last Glacial: an estimate based on AMS radiocarbon dates on terrestrial macrofossils from lake sediment. Radiocarbon 31(3):795804.Google Scholar
Zolitschka, B. 1991. Absolute dating of late Quaternary lacustrine sediments by high resolution varve chronology. Hydrobiology 214:5961.Google Scholar
Zolitschka, B. 1998. Paläoklimatische Bedeutung laminierter Sedimente. Relief Boden, Paläoklima 13. Berlin, Stuttgart: Gebrüder Bornträger Verlag. 176 p.Google Scholar
Zolitschka, B, Negendank, JFW, Lottermoser, BG. 1995. Sedimentological proove and dating of the early Holocene volcanic eruption of Ulmener Maar (Vulkaneifel, Germany). Geologische Rundschau 84:213–19.CrossRefGoogle Scholar