Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T08:03:54.236Z Has data issue: false hasContentIssue false

AMS 14C Dating Of Balearic Lime Burials

Published online by Cambridge University Press:  18 July 2016

Mark Van Strydonck*
Affiliation:
Royal Institute for Cultural Heritage, Jubclpark 1, B-1000 Brussels, Belgium.
Mathieu Boudin
Affiliation:
Royal Institute for Cultural Heritage, Jubclpark 1, B-1000 Brussels, Belgium.
Louise Decq
Affiliation:
Royal Institute for Cultural Heritage, Jubclpark 1, B-1000 Brussels, Belgium.
Tess Van Den Brande
Affiliation:
Royal Institute for Cultural Heritage, Jubclpark 1, B-1000 Brussels, Belgium.
Herlinde Borms
Affiliation:
Antwerp Society for Roman Archaeology (AVRA), Groenenborgerlaan 35, 2610 Wilrijk, Belgium.
Damià Ramis
Affiliation:
Natural History Society of the Balearics, Margarida Xirgú 16, 07011 Palma de Mallorca, Balearic Islands, Spain.
Guy De Mulder
Affiliation:
Department of Archaeology, Ghent University, Blandijnberg 2, 9000 Ghent, Belgium.
*
Corresponding author. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Balearic quicklime burials of the Iron Age have been radiocarbon dated. Because the bones found are unsuitable for dating, lime was dated using the titration method, with results indicating that in some samples there is still fossil limestone carbonate present, while other samples suffered from recarbonation. Nevertheless, 14C dates on lime and organic matter agree when both arc present. The titration method allows calculating a consensus value.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörnsdóttir, ÁE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from Medieval, non-hydraulic lime mortars from Åland Islands, SW Finland. Radiocarbon 49(1):4767.Google Scholar
Micó, R. 2006. Radiocarbon dating and Balearic prehistory: reviewing the periodization of the prehistoric sequence. Radiocarbon 48(3):421–34.Google Scholar
Micó Pérez, R. 2005. Cronologià Absoluta y Periodización de la Prehistoria de las Islas Baleares. BAR International Series 1373. Oxford: Archaeopress. 621 p.Google Scholar
Nadeau, M-J, Grootes, PM, Schliecher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Pachiaudi, C, Maréchal, J, Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1986. Isotopic fractionation of carbon during CO2 absorption by mortar. Radiocarbon 28(2A):691–7.CrossRefGoogle Scholar
Piga, G, Hernández-Gasch, J, Malgosa, A, Ganadu, M-L, Enzo, S. 2010. Cremation practices coexisting at the s'lllot des Porros necropolis during the second Iron Age in the Balearic Islands (Spain). Homo – Journal of Comparative Human Biology 61(6):440–52.Google Scholar
Ringbom, Å, Heinemeier, J, Lindroos, A, Brock, F. 2011. Mortar dating and Roman pozzolana, results and interpretations. In: Ringbom, Å, Hohlfelder, RL, editors. Building Roma Aeterna. Current Research on Roman Mortar and Concrete. Commentationes Humanarum Litterarum 128. Helsinki: Societas Scientiarum Fennica. p 187208.Google Scholar
Stuiver, M, Smith, CS. 1965. Radiocarbon dating of ancient mortar and plaster. In Chatters, RM, Olson, EA, editors. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating. Washington, DC: Natural Bureau of Standards, US Department of Commerce. p 338–43.Google Scholar
Stuiver, M, Waldren, W. 1975. 14C carbonate dating and the age of post-Talayotic lime burials in Mallorca. Nature 255(5508):475–6.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Maréchal, J. 1982–1983. A further step in the radiocarbon dating of old mortars. Bulletin van het Koninklijk Instituut voor het Kunstpatrimonium 19:155–71.Google Scholar
Van Strydonck, M, Dupas, M, Dauchot-Dehon, M, Pachiaudi, C, Maréchal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702–10.Google Scholar
Van Strydonck, M, Dupas, M, Keppens, E. 1989. Isotopic fractionation of oxygen and carbon in lime mortar under natural environmental conditions. Radiocarbon 31(3):610–8.Google Scholar
Van Strydonck, M, Waldren, WH. 1990. Radiocarbon dating of lime burials. PACT 29:403–14.Google Scholar
Van Strydonck, M, van der Borg, K. 1990–1991. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage Brussels. Bulletin van het Koninklijk Instituut voor het Kunstpatrimonium 23:228–34.Google Scholar
Van Strydonck, M, Waldren, WH. 1995. Radiocarbon dating of the Son Matge rock shelter. In: Waldren, WH, Ensenyat, JA, Kennard, RC, editors. IIIrd Deya International Conference of Prehistory, Ritual, Rites and Religion in Prehistory. BAR International Series 611. Oxford: Archaeopress. p 164–82.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, M. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578–86.Google Scholar
Waldren, WH. 1982. Balearic Prehistory Ecology and Culture. BAR International Series 149. Oxford: Archaeopress. 401 p.Google Scholar
Waldren, WH, Van Strydonck, M. 1995. Deed or murder most foul? Ritual, rite or religion? Mallorca inhumation in quicklime. In: Waldren, WH, Ensenyat, JA, Kennard, RC, editors. IIIrd Deya International Conference of Prehistory, Ritual, Rites and Religion in Prehistory. BAR International Series 611. Oxford: Archaeopress. p 146–63.Google Scholar