Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T23:07:36.396Z Has data issue: false hasContentIssue false

AMOURINS SHELLMOUND: UNCOVERING BIODIVERSITY AND CHRONOLOGY THROUGH CHARCOAL ANALYSES

Published online by Cambridge University Press:  02 March 2021

Kita D Macario*
Affiliation:
Universidade Federal Fluminense, Instituto de Física, Av. Gal. Milton Tavares de Souza s/n, 24210–346 - Niterói, RJ, Brazil
Rita Scheel-Ybert
Affiliation:
Museu Nacional da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Natacha Ribeiro-Pinto
Affiliation:
Museu Nacional da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
Bruna B Pereira
Affiliation:
Universidade Federal Fluminense, Instituto de Física, Av. Gal. Milton Tavares de Souza s/n, 24210–346 - Niterói, RJ, Brazil
Dayanne Amaral
Affiliation:
Universidade Federal Fluminense, Instituto de Física, Av. Gal. Milton Tavares de Souza s/n, 24210–346 - Niterói, RJ, Brazil Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, campus Nova Friburgo, Av. Governador Roberto Silveira, 1900, Prado - Nova Friburgo, RJ, Brazil
Eduardo Q Alves
Affiliation:
Universidade Federal Fluminense, Instituto de Física, Av. Gal. Milton Tavares de Souza s/n, 24210–346 - Niterói, RJ, Brazil Oxford Radiocarbon Accelerator Unit, University of Oxford, OX1 3TGOxford, United Kingdom
*
*Corresponding author. Email: [email protected].

Abstract

In paleoenvironmental research, several proxies are used to reconstruct climate and vegetation. The establishment of a chronological framework allows for the association of different proxies and correlation of events happening in different geographic areas. Cultural deposits, such as the shellmounds found along the coast of Brazil, play an important role in paleoenvironmental interpretations. Here, we have employed anthracological analysis in charcoal fragments from the Amourins shellmound, located at the margins of the Guanabara Bay, Rio de Janeiro. This allowed for the taxonomic identification and selection of short-lived trees and specific parts of plants for accurate radiocarbon dating. We recorded genera and families typical of the Atlantic Forest, restinga forest, open restinga and mangrove. The 14C ages of charred nuts from different occupational layers range from 3807 ± 35 to 3503 ± 70 BP and a sequential chronological model was built, relating the predominance of mangrove vegetation to the period between 4130–3960 cal BP.

Type
Conference Paper
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Aguiar, MB 2005. A vegetação no entorno das Baías de Guanabara e Sepetiba (RJ) durante o Holoceno: dados palinológicos. Anais de congresso, ABEQUA.Google Scholar
Amador, ES, Ponzi, VRA. 1974. Estratigrafia e sedimentação dos depósitos fluviomarinhos da orla da baía de Guanabara. Anais da Academia Brasileira de Ciências 46:34.Google Scholar
Amador, ES. 1997. Baía de Guanabara e Ecossistemas Periféricos: Homem e Natureza. Rio de Janeiro. 539 p.Google Scholar
Araujo, DD, Henriques, RP. 1984. Análise florística das restingas do Estado do Rio de Janeiro. Restingas: origem, estrutura e processos. p. 159–93.Google Scholar
Barreto, CF, Barth, OM, Luz, CFP, Baptista Neto, JA, Vilela, CG. 2005. Reconstrução paleoambiental do Holoceno da Baía de Guanabara, Rio de Janeiro, através de análise palinológica: resultados preliminares. X Congresso da Associação Brasileira de Estudos do Quaternário, Guarapari. p. 1–6.Google Scholar
Barros, MA, Barth, OM, Mello, CL, Moura, JRS, Peixoto, MNO. 2000. História recente da vegetação e o uso da terra no médio vale do rio Paraíba do Sul. Leandra 15:4757.Google Scholar
Barros, MA. 2003. Transição Pleistoceno/Holoceno, médio vale do Rio Paraíba do Sul (SP/RJ): uma abordagem palinológica. Tese de Doutorado, Instituto de Geociências, Universidade Federal do Rio de Janeiro.Google Scholar
Barros, MA, Barth, OM. 2005. A vegetação no entorno das Baías de Guanabara e Sepetiba (RJ) durante o Holoceno: dados palinológicos. X Congresso da Associação Brasileira de Estudos do Quaternário, Guarapari. 6 p.Google Scholar
Bartholomeu, RL. 2001. Alterações ambientais ocorridas na paisagem da Praia Vermelha, Urca, Rio de Janeiro: uma abordagem sedimentológica e palinológica. Monografia de bacharelado, Departamento de Geografia, Instituto de Geociências, Universidade do Estado do Rio de Janeiro.Google Scholar
Bartholomeu, RL, Barth, OM, Barros, MA. 2001. Estudos palinológicos em sedimentos quaternários turfosos da praia Vermelha, Urca, Rio de Janeiro. Boletim de Resumos do VIII Congresso da Associação Brasileira de Estudos do Quaternário. p. 398–399.Google Scholar
Bartholomeu, RL, Barros, MA, Lopes, MRS, Vilela, CG, Barth, OM. 2014. Evolução paleogeográfica da planície costeira da Praia Vermelha, entrada da Baía de Guanabara, Rio de Janeiro, por meio de registros palinológicos. Anuário do Instituto de Geociências 37(1):92103.10.11137/2014_1_92_103CrossRefGoogle Scholar
Bianchini, G.F. and Scheel-Ybert, R. 2012. Plants in a funerary context at the Jabuticabeira-II shellmound (Santa Catarina, Brazil) – feasting or ritual offerings? In: Badal, E, Carrión, Y, Macías, M, Ntinou, M, editors. Wood and charcoal: evidence for human and natural history. Valencia: Sagvntvm Extra. p. 253258.Google Scholar
Bianchini, GF et al. 2011. Processo de formação do sambaqui Jabuticabeira-II: interpretações através da análise estratigráfica de vestígios vegetais carbonizados. Revista do Museu de Arqueologia e Etnologia, São Paulo 21:5169.10.11606/issn.2448-1750.revmae.2011.89961CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425430.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.10.1017/S0033822200033865CrossRefGoogle Scholar
Bronk Ramsey, C, Scott, EM, van der Plicht, J. 2013. Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55(4): 20212027.10.2458/azu_js_rc.55.16935CrossRefGoogle Scholar
Calegari, MR, Madella, M, Brustolin, LT, Ruiz Pessenda, LCR, Buso, AA Jr, Francisquini, MI, Bendassolli, JA, Vidal-Torrado, P. 2017. Potential of soil phytoliths, organic matter and carbon isotopes for small-scale differentiation of tropical rainforest vegetation: a pilot study from the campos nativos of the Atlantic Forest in Espírito Santo State (Brazil). Quaternary International, 437:156164.CrossRefGoogle Scholar
Cardoso, LSCP. 2013. Além das Conchas: Análise Zooarqueológica do Sambaqui de Amourins/Lilian Cardoso e Silva Costa Pinto. 176 f.: il. MSc aissertation (Archaeology) – Universidade Federal do Rio de Janeiro, Museu Nacional, Rio de Janeiro.Google Scholar
Chabal, L. 1997. Forêts et Sociétés en Languedoc (Néolithique Final, Antiquité Tardive) L’Anthracologie, Méthode et Paleoécologie. Documents d’archéologie française 63:188.Google Scholar
Coe, HHG, Macario, K, Jenifer, G, Karina, F, Oliveira, F, Gomes, PRS, Carvalho, C, Linares, R, Alves, E, Guaciara, M. 2014. Understanding Holocene variations in the vegetation of Sao Joao River basin, southeastern coast of Brazil, using phytolith and carbon isotopic analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 415:5968.CrossRefGoogle Scholar
Coe, HHG, Souza, RL, Duarte, MR, Ricardo, SF, Machado, DF, Macario, KD, Silva, EP. 2017. Characterisation of phytoliths from the stratigraphic layers of the sambaqui da Tarioba (Rio das Ostras), RJ, Brazil. Flora 236:18.CrossRefGoogle Scholar
Coelho, LG, Barth, O M, Chaves, H F. 1999. O registro palinológico das mudanças de vegetação na região da Baía de Sepetiba, Rio de Janeiro, nos últimos 1.000 anos. Leandra 14:5163.Google Scholar
Coelho, LN. 2007. Alterações Hidrogeomorfológicas no Médio-Baixo Rio Doce/ES 2007. 227 f. Tese de Doutorado (Universidade Federal Fluminense, Instituto de Geociências, Departamento de Geografia), Niterói.Google Scholar
Costa, MA. 2015. Da lama ao caos: um estuário chamado Baía de Guanabara. Cad. Metrop., São Paulo 17(33):1539.CrossRefGoogle Scholar
Gaspar, MD, DeBlasis, P, Fish, SK, Fish, PR. 2008. Sambaqui (shell mound) societies of coastal Brazil. The handbook of South American archaeology. New York: Springer. p. 319335.CrossRefGoogle Scholar
Gaspar, MD. 2016. Tudo junto e misturado, separado pela crença e compactado pelo tempo. Revista Habitus. Goiânia 14(1):3550.Google Scholar
Gaspar, MD, Klokler, DM, Scheel-Ybert, R, Bianchini, GF. 2013. Sambaqui de Amourins: mesmo sítio, perspectivas diferentes. Arqueologia de um sambaqui 30 anos depois. Revista do Museu de Antropologia 6:720.CrossRefGoogle Scholar
Gonzalez, MMB. 2005. Use of Pristis spp. (Elasmobranchii: Pristidae) by hunter-gatherers on the coast of São Paulo, Brazil. Neotropical Ichthyology 3:421426.CrossRefGoogle Scholar
Heredia, OR, Beltrão, MCMC. 1980. Mariscadores e pescadores pré-históricos do litoral centro-sul brasileiro. Pesquisas, Série Antropologia 31:101119.Google Scholar
Hogg, AG, Heaton, TJ, Hua, Q, Palmer, JG, Turney, CSM, Southon, J, Bayliss, A, Blackwell, PG, Boswijk, G, Bronk Ramsey, C, Pearson, C, Petchey, F, Reimer, P, Reimer, R, Wacker, L. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759778. doi: 10.1017/RDC.2020.59.CrossRefGoogle Scholar
Heredia, OR, Beltrão, MCMC, Oliveira, MDG, Gatti, MP. 1981/1982. Pesquisas arqueológicas no sambaqui de Amourins, Magé, RJ. Separata do arquivos do Museu de História Natural – UFMG, col. VI/VII. p. 175–188.Google Scholar
Jansonius, J, McGregor, DC. 1996. Introduction. In: Jansonius, J, McGregor, DC, editors. Palynology: principles and applications. Vol. 1. Salt Lake City: American Association of Stratigrahic Palynologist Foundation. 462 p.Google Scholar
Juggins, S. 2005. C2 Version 1.5. Software for ecological and paleoecological data analysis and visualisation. Newcastle University, Newcastle Upon Tyne, UK. Available at: http://www.campus.ncl.ac.uk/staff/Stephen.Juggins/software/C2Home.htm.Google Scholar
Klokler, D, Gaspar, MD, Scheel-Ybert, R. 2018. Why clam? Why clams? Shell mound construction in southern Brazil. Journal of Archaeological Science: Reports 20:856863.Google Scholar
Lessa, C. 2000. O Rio de todos os Brasis: uma reflexão em busca de auto-estima. Rio de Janeiro, Record.Google Scholar
Lorente, FL, Pessenda, LCR, Oboh-Ikuenobe, F, Junior, AAB, Rossetti, DF, Giannini, PCF, Cohen, MCL, Oliveira, PE, Mayle, FE, Franscisquini, MI, França, M C, Bendassolli, JA, Macario, KD. 2018. An 11,000-year record of depositional environmental change based upon particulate organic matter and stable isotopes (C and N) in a lake sediment in southeastern Brazil. Journal of South American Earth Sciences 84:373384.CrossRefGoogle Scholar
Lopes, MS, Bertucci, TCP, Rapagnã, L, Tubino, RA, Neto, CM, Tomas, ARG, Tenório, MC, Lima, T, Souza, R, Jorge Domingo Briceño, JDC, Haimovici, M, Macario, KD, Carvalho, C, Socorro, OA. 2016. The path towards endangered species: prehistoric fisheries in southeastern Brazil. PloS One 11(6):0154476.CrossRefGoogle ScholarPubMed
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, E, Douka, K, Decco, J, Trindade, D, Marques, JRAN, Anjos, RM, Pamplona, FC. 2015. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:1419.10.1016/j.jenvrad.2015.02.002CrossRefGoogle ScholarPubMed
Macario, KD, Alves, EQ, Carvalho, C, Oliveira, FM, Bronk, RC, David, C, Souza, R, Simone, LRL, Cavallari, DC. 2016. The use of the terrestrial snails of the genera Megalobulimus and Thaumastus as representatives of the atmospheric carbon reservoir. Scientific Reports 6: 27395.10.1038/srep27395CrossRefGoogle ScholarPubMed
Macario, KD, Tenório, MC, Alves, EQ, Oliveira, FM, Chanca, IS, Netto, B, Carvalho, C, Souza, R, Aguilera, O, Guimarães, RB. 2017. Terrestrial mollusks as chronological records in Brazilian shellmounds. Radiocarbon 59(5):15611577. doi: 10.1017/RDC.2017.34.CrossRefGoogle Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2–3):325330.10.1017/S003382220005743XCrossRefGoogle Scholar
Moraes, CA, Fontes, NA, Cohen, MC, França, MC, Pessenda, LC, Rossetti, DF, Francisquini, MI, Bendassolli, JA, Macario, K. 2017. Late Holocene mangrove dynamics dominated by autogenic processes. Earth Surface Processes and Landforms 42(13):20132023.CrossRefGoogle Scholar
Oliveira, PE, Behling, H, Ledru, MP, Barberi, M, Bush, M, Garcia, MJ, Medeanic, S, Barth, OM, Scheel-Ybert, R. 2005. Paleovegetação e Paleoclimas do Quaternário do Brasil. In: Gouveia, CR, Suguio K, Oliveira AMS, Oliveira PE de, editors. O Quaternário do Brasil. Ribeirão Preto: Holos editora 1:52–74.Google Scholar
Oliveira, F, Macario, K, Carvalho, C, Moreira, V, Alves, EQ, Chanca, I, Diaz, M, Jou, R, Hammerschlag, I, Netto, BM, Oliveira, MI, Assumpção, FD. 2021. LAC-UFF status report: current protocols and recent developments. Radiocarbon: 113. doi: 10.1017/RDC.2020.138.CrossRefGoogle Scholar
Théry-Parisot, I, Chabal, L, Chrzavzez, J. 2010. Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts, Palaeogeography, Palaeoclimatology, Palaeoecology 291(1–2):142153.CrossRefGoogle Scholar
Santos, DS. 2000. Análise palinológica como ferramenta de interpretação de oscilações climáticas, ambientais e do nível do mar na Baía de Sepetiba, RJ [MSc dissertation (Geology)]. Departamento de Geologia/UERJ, Rio de Janeiro. 85 p.Google Scholar
Salgado-Labouriau, ML. 1961. Palinologia: fundamentos, técnicas e algumas perspectivas. Revista Brasileira de Geografia 4:107129.Google Scholar
Scheel-Ybert, R. 2000. Vegetation stability in the Southeastern Brazilian coastal area from 5500 to 1400 14C yr BP deduced from charcoal analysis. Review of Palaeobotany and Palynology 110(2):111138.CrossRefGoogle ScholarPubMed
Scheel-Ybert, R, Dias, OF. 2007. Corondó: palaeoenvironmental reconstruction and palaeoethnobotanical considerations in a probable locus of early plant cultivation (south-eastern Brazil). Environmental Archaeology 12:129138.CrossRefGoogle Scholar
Scheel-Ybert, R, Eggers, S, Wesolowski, V, Petronilho, CC, Boyadjian, CHC, DeBlasis, PAD, Barbosa-Guimarães, M, Gaspar, MD. 2003. Novas perspectivas na reconstituição do modo de vida dos sambaquieiros. Revista de Arqueologia 16(1):109137.CrossRefGoogle Scholar
Scheel-Ybert, R, Bianchini, GF, DeBlasis, P. 2009. Registro de mangue em um sambaqui de pequeno porte do litoral sul de Santa Catarina, Brasil, a cerca de 4900 anos cal yrs BP, e considerações sobre o processo de ocupação do sítio Encantada-III. Revista do Museu de Arqueologia e Etnologia, São Paulo 19:103118.CrossRefGoogle Scholar
Scheel-Ybert, R, Carvalho, MA, Moura, RPO, Gonçalvez, TAP, Scheel, M, Ybert, JP. 2006a. Coleções de referência e bancos de dados de estruturas vegetais: subsídios para estudos paleoecológicos e paleoetnobotânicos. Arquivos do Museu Nacional, Rio de Janeiro 64(3):255266.Google Scholar
Scheel-Ybert, R, Klokler, DM, Gaspar, MD, Figuti, L. 2006b. Proposta de amostragem padronizada para macrovestígios bioarqueológicos: antracologia, arqueobotânica, zooarqueologia. Revista do Museu de Arqueologia e Etnologia 15–16:139163.CrossRefGoogle Scholar
Scheel-Ybert, R. 2013. Antracologia: preservados pelo fogo. In: Gaspar, MD, Mendonça de Souza, SM, editors. Abordagens estratégicas em sambaquis. Vol. 1. Erechin: Habilis. p. 193218.Google Scholar
Scheel-Ybert, R. 2018a. Anthracology: charcoal analysis. In: Smith, C, editor. Encyclopedia of global archaeology. New York: Springer-Verlag.Google Scholar
Scheel-Ybert, R. 2018b. Landscape and plants use in Brazilian shell mounds In: Smith, C, editor. Encyclopedia of global archaeology. New York: Springer-Verlag.Google Scholar
Scheel-Ybert, R, Boyadjian, C. 2020. Gardens on the coast: considerations on food production by Brazilian shellmound builders. Journal of Anthropological Archaeology 60:101211. doi: 10.1016/j.jaa.2020.101211.CrossRefGoogle Scholar
Soares-Gomes, A, Da Gama, BA, Neto, JB, Freire, DG, Cordeiro, RC, Machado, W, Bernardes, MC, Coutinho, R, Thompson, FL, Pereira, RC. 2016. An environmental overview of Guanabara Bay, Rio de Janeiro. Regional Studies in Marine Science 8(2):319330.CrossRefGoogle Scholar
Souza, CR. 2005. Quaternário do Brasil. Ribeirão Preto, Holos Editora 28:382.Google Scholar
Souza, RCCL, Lima, TA, Silva, EP. 2010. Holocene mollusks from Rio de Janeiro state coast, Brazil. Check List Journal of Species Lists and Distribution 6(2):301308.CrossRefGoogle Scholar
Suguio, K, Tessler, MG. 1984. Planícies de cordões litorâneos quaternários do Brasil: origem e nomenclatura. In: UFF, editor. Restingas: origem, estrutura e processos. UFF: Universidade Federal Fluminense - Rio de Janeiro. p. 15–25.Google Scholar
Tasayco-Ortega, LA. 1996. Variations paléohydrologiques et paléoclimatiques d’une région d’upwelling au cours de l’Holocène: enregistrement dans les lagunes côtières de Cabo Frio (État de Rio de Janeiro, Brésil) [doctoral thesis]. Paris: Univ. Pierre et Marie Curie. 321 p.Google Scholar
Vernet, JL. 1977. Les Macrofossiles Végétaux et la Paléoécologie du Pléistocène. Bulletin de l’Association Française pour l’étude du Quaternaire, Suppl. 47:5355.Google Scholar