Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T09:36:18.900Z Has data issue: false hasContentIssue false

Age Estimates on the Deposition of the Cave Ice Block in the Saarhalle Dachstein-Mammoth Cave (Mammuthöhle, Austria) based on 3H and 14C

Published online by Cambridge University Press:  02 October 2018

Z Kern*
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, MTA, Budaörsi út 45, Budapest, H-1112, Hungary Isotope Climatology and Environmental Research Centre (ICER), MTA ATOMKI, Bem tér 18/c, Debrecen, Hungary
L Palcsu
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), MTA ATOMKI, Bem tér 18/c, Debrecen, Hungary
R Pavuza
Affiliation:
Working Group of Karst and Cave Science at the Natural History Museum Vienna, Burgring 7, Vienna, Austria
M Molnár
Affiliation:
Isotope Climatology and Environmental Research Centre (ICER), MTA ATOMKI, Bem tér 18/c, Debrecen, Hungary
*
*Corresponding author. Email: [email protected].

Abstract

Measurements of the radiocarbon (14C) and tritium (3H) activity in a 5.8-m-long ice core from the Saarhalle, Dachstein-Mammoth Cave allowed a substantial revision of previous opinions concerning the age of the ice block, and provide useful experience that may be applied to future 14C dating of cave ice deposits. The stepped combustion technique results in a remarkably older radiocarbon age for the 800°C than for the 400°C fractions of the carbonaceous matter from ice layer samples. The highest tritium activity (37.2±1.2 TU) can be linked to the period of anthropogenically increased tritium activity of atmospheric precipitation at the mid-1960s, providing a well-dated radiochemical reference horizon. Compared the 3H-based extrapolated ages of two shallow samples to the expected atmospheric signal an average 14C reservoir bias of ~1500 BP was obtained for the insoluble organic fraction combusted at 400°C. The conventional 14C age measured for the 400°C fraction of the deeper samples has been corrected with the average reservoir bias. The median calibrated age of the deepest analyzed sample of the ice profile is ~1830 cal BC and a linear extrapolation to the bottom ice layer gave 2590 cal BC, making the Saarhalle ice block among the oldest dated cave ice deposits known in the Alpine domain.

Type
Soil
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2nd Radiocarbon in the Environment Conference, Debrecen,Hungary, 3–7 July 2017

References

REFERENCES

Achleitner, A. 1995. Zum Alter des Höleneises in der Eisgruben-Eishöhle im Sarstein (Oberösterreich). Die Höhle 46(1):15.Google Scholar
Behm, M, Hausmann, H. 2008. Determination of ice thickness in Alpine caves using georadar. In: Kadebskaya O, Mavlyudov BR, Pyatunin M, editors. 3rd International Workshop on Ice Caves Proceedings. Kungur, Russia. p 53–8.Google Scholar
Borsato, A, Miorandi, R, Flora, O. 2006. I depositi di ghiaccio ipogei della Grotta dello Specchio e del Castelletto di Mezzo (Dolomiti di Brenta, Trentino): morfologia, età ed evoluzione recente. Studi Trent. Sci. Nat., Acta Geol 81:5374.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C 2013. OxCal project, Version 4.2.4. Retrieved April 2016 https://c14.arch.ox.ac.uk/oxcal/OxCal.html Google Scholar
Colucci, RR, Forte, E, Maggi, V, Stenni, B, Barbante, C, Bertò, M, Dreossi, G, Filipazzi, M, Gabrieli, J, Hoffmann, H, Lenaz, D. 2016. The Vasto Ice Cave in the south-eastern Alps, Europe: preliminary results from an ice core analysis. In: Mihevc A, Hajna Zupan N, Gostincar P, editors. 7th International Workshop on Ice Caves: Program Guide and Abstracts. Postojna: Karst Research Institute ZRC SAZU. p 42–3.Google Scholar
Colucci, RR, Luetscher, M, Festi, D, Mosley, GE, Schwikowski, M, Edwards, RL. 2018. On issues related to dating techniques in ice caves. In: Serrano E, editor. 8th International Workshop on Ice Caves: Scientific Program and Abstracts. GIR PANGEA. 23 p.Google Scholar
Egli, M, Sartori, G, Mirabella, A, Favilli, F, Giaccai, D, Delbos, E. 2009. Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149(1):124136.Google Scholar
Gradziński, M, Hercman, H, Peresviet-Soltan, A, Zelinka, J, Jelonek, M. 2016. Radiocarbon dating of fossil bats from Dobšina Ice Cave (Slovakia) and potential palaeoclimatic implications. Annales Societatis Geologorum Poloniae 86:341350. doi:10.14241/asgp.2016.016 Google Scholar
Hausmann, H, Behm, M. 2011. Imaging the structure of cave ice by ground-penetrating radar, The Cryosphere 5:329340, doi:10.5194/tc-5-329-2011 Google Scholar
Hercman, H, Gąsiorowski, M, Gradziński, M, Kicińska, D. 2010. The first dating of cave ice from the Tatra Mountains, Poland and its implication to palaeoclimate reconstructions. Geochronometria 36:3138.Google Scholar
Herrmann, E, Pucher, E, Nicolussi, K. 2010. Das Schneeloch auf der Hinteralm (Schneealpe, Steiermark): Speläomorphologie, Eisveränderung, Paläozoologie und Dendrochronologie. Die Höhle 61:5772.Google Scholar
Hoffmann, H, Bohleber, P, Wagenbach, D. 2015. Micro radiocarbon dating-applications and challenges in Alpine glaciology. Geophysical Research Abstracts 17: EGU2015–9119 Google Scholar
Hoffmann, H, Preunkert, S, Legrand, M, Leinfelder, D, Bohleber, P, Friedrich, R, Wagenbach, D. 2017. A new sample preparation system for micro-14C dating of glacier ice with a first application to a high Alpine ice core from Colle Gnifetti (Switzerland).” Radiocarbon 60(2): 517533. doi:10.1017/RDC.2017.99.Google Scholar
IAEA 2010. Global Network of Isotopes in Precipitation, The GNIP Database 2010, URL: <http://www.isohis.iaea.org> (last access: 9 July 2012).+(last+access:+9+July+2012).>Google Scholar
Jenk, TM, Szidat, S, Schwikowski, M, Gäggeler, HW, Brütsch, S, Wacker, L, Synal, HA, Saurer, M. 2006. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940). Atmos. Chem. Phys. 6:53815390, doi:10.5194/acp-6-5381-2006 Google Scholar
Jenk, TM, Szidat, S, Schwikowski, M, Gäggeler, HW, Wacker, L, Synal, HA, Saurer, M. 2007. Microgram level radiocarbon (14C) determination on carbonaceous particles in ice. Nuclear Instruments and Methods in Physics Research B 259:518525. doi:10.1016/j.nimb.2007.01.196.Google Scholar
Kern, Z. 2018. Dating cave ice deposits. In: Persoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 109122.Google Scholar
Kern, Z, Molnár, M, Svingor, É, Perşoiu, A, Nagy, B. 2009. High resolution well preserved tritium record in the ice of Borţig Ice Cave, Bihor Mountains, Romania. The Holocene 19:729736. doi:10.1177/0959683609105296.Google Scholar
Kern, Z, Fórizs, I, Pavuza, R, Molnár, M, Nagy, B. 2011. Isotope hydrological studies of the perennial ice deposit of Saarhalle, Mammuthöhle, Dachstein Mts, Austria. The Cryosphere 5:291298. doi:10.5194/tc-5-291-2011.Google Scholar
Kralik, M., Papesch, W. Stichler, W. 2003. Austrian Network of Isotopes in Precipitation (ANIP): Quality assurance and climatological phenomenon in one of the oldest and densest networks in the world. Isot. Hydrol . Integr. Water Resour. Manag. 23:146149.Google Scholar
Lucas, LL, Unterweger, MP. 2000. Comprehensive review and critical evaluation of the half-life of tritium. J. Res. Natl. Inst. Stand. Technol 105:541549.Google Scholar
Luetscher, M, Bolius, D, Schwikowski, M, Schotterer, U, Smart, PL. 2007. Comparison of techniques for dating of subsurface ice from Monlesi ice cave, Switzerland, J Glaciol 53:374384.Google Scholar
Luetscher, M. 2013. Glacial processes in caves. In: Frumkin A, editor. Treatise on Geomorphology. Volume 6, Karst Geomorphology. San Diego (CA): Academic Press. p 258266.Google Scholar
Mais, K, Pavuza, R. 2000. Hinweise zu Höhlenklima und Höhleis in der Dachstein Mammuthöhle (Oberösterreich). Die Höhle 51:121125.Google Scholar
May, B, Spötl, C, Wagenbach, D, Dublyansky, Y, Liebl, J. 2011. First investigations of an ice core from Eisriesenwelt cave (Austria). The Cryosphere 5:8193. doi:10.5194/tc-5-81-2011.Google Scholar
Molnár, M, Joó, K, Barczi, A, Szántó, Z, Futó, I, Palcsu, L, Rinyu, L. 2004. Dating of total soil organic matter used in kurgan studies. Radiocarbon 46(1):413419.Google Scholar
Molnár, M, Janovics, R, Major, I, Orsovszki, J, Gönczi, R, Veres, M, Leonard, AG, Castle, SM,Lange, TE, Wacker, L, Hajdas, I, Jull, AJT. 2013a. Status report of the new AMS 14C sample preparation lab of the Hertelendi Laboratory of Environmental Studies, Debrecen, Hungary. Radiocarbon 55:665676.Google Scholar
Molnár, M, Rinyu, L, Veres, M, Seiler, M, Wacker, L, Synal, HA 2013b. EnvironMICADAS: a mini 14C-AMS with enhanced gas ion source interface in the Hertelendi Laboratory of Environmental Studies (HEKAL), Hungary. Radiocarbon 55:338344. doi: 10.2458/azu_js_rc.55.16331.Google Scholar
Munroe, JS, O’Keefe, SS, Gorin, AL. 2018. Chronology, stable isotopes, and glaciochemistry of perennial ice in Strickler Cavern, Idaho, USA. GSA Bulletin 130:175192. https://doi.org/10.1130/B31776.1.Google Scholar
Palcsu, L, Major, Z, Köllő, Z, Papp, L. 2010. Using an ultrapure 4He spike in tritium measurements of environmental water samples by the 3He-ingrowth method. Rapid Commun. Mass Spectrom. 24:698704. doi: 10.1002/rcm.4431.Google Scholar
Perșoiu, A, Onac, BP, Wynn, JG, Blaauw, M, Ionita, M, Hansson, M. 2017. Holocene winter climate variability in Central and Eastern Europe. Scientific Reports 7(1):1196.Google Scholar
Perşoiu, A, Pazdur, A. 2011. Ice genesis and its long-term mass balance and dynamics in Scărişoara Ice Cave, Romania. The Cryosphere 5:4553. doi:10.5194/tc-5-45-2011.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Rinyu, L, Orsovszki, G, Futó, I, Veres, M, Molnár, M. 2015. Application of zinc sealed tube graphitization on sub-milligram samples using EnvironMICADAS. Nuclear Instruments and Methods in Physics Research B 361:406413.Google Scholar
Roether, W. 1967. Estimating the tritium input to groundwater from wine samples: ground-water and direct run-off contribution to central European surface waters. Proceedings of IAEA Conference on Isotopes in Hydrology. Vienna: IAEA. p 73–90.Google Scholar
Rumpel, C, Kögel-Knabner, I. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143158. https://doi.org/10.1007/s11104-010-0391-5.Google Scholar
Sancho, C, Belmonte, A, López-Martínez, J, Moreno, A, Bartolomé, M, Calle, M, Santolaria, P. 2012. Potencial paleoclimático de la cueva helada A294 (Macizo de Cotiella, Pirineos, Huesca). Geogaceta 52:101104.Google Scholar
Sancho, C, Belmonte, Á, Bartolomé, M, Moreno, A, Leunda, M, López-Martínez, J. 2018. Middle-to-late Holocene palaeoenvironmental reconstruction from the A294 ice-cave record (central Pyrenees, northern Spain). Earth and Planetary Science Letters 484:135144.Google Scholar
Scheidleder, A, Boroviczeny, F, Graf, W, Hofmann, T, Mandl, G, Schubert, G, Stichler, W, Trimborn, P, Kralik, M. 2001. Pilotprojekt “Karstwasser Dachstein”: vol. 2 Karsthydrologie und Kontaminationsrisiko von Quellen. Umweltbundesamt Monographie 108:1155.Google Scholar
Spötl, C, Reimer, PJ, Luetscher, M. 2014. Long-term mass balance of perennial firn and ice in an Alpine cave (Austria): Constraints from radiocarbon-dated wood fragments. The Holocene 24:165175. doi: 10.1177/0959683613515729 Google Scholar
Spötl, C, Plan, L, Christian, E. 2016. Höhlen und Karst in Österreich . Linz. 752 p.Google Scholar
Spötl, C, Wimmer, M, Pavuza, R, Plan, L. 2018. Ice caves in Austria. In: Persoiu A, Lauritzen SE, editors. Ice Caves. Elsevier. p 237262.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(2):355363.Google Scholar
Uglietti, C, Zapf, A, Jenk, TM, Sigl, M, Szidat, S, Salazar, G, Schwikowski, M. 2016. Radiocarbon dating of glacier ice: overview, optimisation, validation and potential. The Cryosphere 10:30913105. doi:10.5194/tc-10-3091-2016.Google Scholar
Újvári, G, Molnár, M, Páll-Gergely, B. 2016. Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hungary. Quaternary Geochronology 35:4353.Google Scholar
Weißmair, R. 2011. Eisdatierung und Eisveränderungen im Kraterschacht (1651/24, Sengsengebirge, Oberösterreich) zwischen 1992 und 2009. Die Höhle 62:2730.Google Scholar