Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:58:28.195Z Has data issue: false hasContentIssue false

Tracing Carbon Isotope Variations in Lake Sediments Caused by Environmental Factors During the Past Century: A Case Study of Lake Tapeliai, Lithuania

Published online by Cambridge University Press:  27 June 2019

Rūta Barisevičiūtė*
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
Evaldas Maceika
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
Žilvinas Ežerinskis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
Jonas Mažeika
Affiliation:
State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT 08412, Lithuania
Laurynas Butkus
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
Justina Šapolaitė
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
Andrius Garbaras
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
Ričardas Paškauskas
Affiliation:
State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT 08412, Lithuania
Olga Jefanova
Affiliation:
State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT 08412, Lithuania
Jūratė Karosienė
Affiliation:
State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT 08412, Lithuania
Jūratė Kasperovičienė
Affiliation:
State Research Institute Nature Research Centre, Akademijos 2, Vilnius, LT 08412, Lithuania
Vidmantas Remeikis
Affiliation:
State Research Institute Center for Physical Sciences and Technology, Savanorių ave. 231, Vilnius, LT-02300, Lithuania
*
*Corresponding author. Email: [email protected].

Abstract

In this study, we examined how land use and urbanization changes in adjacent areas affected biological productivity and carbon cycling in a lake ecosystem over 100 years and how these changes are reflected in carbon isotope variations. We performed radiocarbon (14C) activity and stable carbon isotope ratio analysis in two organic fractions: humin and humic acids of lake sediment. Additionally, we performed pigment and diatom analysis and determined the carbonate and organic matter (OM) content in sediments. Over the last century, the estimated 14C reservoir age in both sediment organic fractions varied from 1136 ± 112 yr to 5733 ± 122 yr. The increase in the reservoir age by 1175 ± 111 yr was related with higher inputs of pre-aged organic carbon and 14C depleted hard water due to the opening of the channel connecting two lakes. Nuclear weapons tests caused an increase in the reservoir age of up to 5421 ± 135 yr and 5733 ± 122 yr in humin and humic acids, respectively. 13C values in the humic acid fraction showed a tendency to decrease, depending on the content of autochthonous versus allochthonous OM in sediments, while changes in the sources of OM had a minor impact on the stable carbon isotope composition in the humin fraction.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, MB, Stafford, TW. 1996. Radiocarbon geochemistry of modern and ancient arctic lake systems, Baffin Island, Canada. Quaternary Research 45(3):300311.CrossRefGoogle Scholar
Appleby, PG. 2001. Chronostratigraphic techniques in recent sediments. In: Last, WM, Smol, JP, editors. Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques. Dordrecht: Kluwer Academic Publishers. p. 171203.CrossRefGoogle Scholar
Appleby, PG, Oldfield, F. 1978. The calculation of 210Pb dates assuming a constant rate of supply of unsuported 210Pb to the sediment. CATENA 5(1):18.CrossRefGoogle Scholar
Bastviken, D, Persson, L, Odham, G, Tranvik, L. 2004. Degradation of dissolved organic matter in oxic and anoxic lake water. Limnology and Oceanography 49(1):109116.CrossRefGoogle Scholar
Battarbee, R.W. 1986. Diatom analysis. In: Berglund, BE, editor. Handbook of Holocene paleoecology and paleohydrology. London: Wiley & Sons. p. 527570.Google Scholar
Bitinas, A. 2012. New insights into the last deglaciation of the south-eastern flank of the Scandinavian Ice Sheet. Quaternary Science Reviews 44:6980.CrossRefGoogle Scholar
Blažauskas, N, Jurgaitis, A, Šinkunas, P. 2007. Patterns of Late Pleistocene proglacial fluvial sedimentation in the SE Lithuanian Plain. Sedimentary Geology 193(1–4):193201.CrossRefGoogle Scholar
Brenner, M, Whitmore, TJ, Curtis, JH, Hodell, DA, Schelske, CL. 1999. Stable isotope (Δ13C and Δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology 22(2):205221.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Ramsey, CB. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Bronk, Ramsey C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.CrossRefGoogle Scholar
Bronk, Ramsey C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.Google Scholar
Charman, DJ, Aravena, R, Bryant, CL, Harkness, DD. 1999. Carbon Isotopes in Peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England. Geology 27(6):539542.2.3.CO;2>CrossRefGoogle Scholar
Clymo, RS, Bryant, CL. 2008. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochimica et Cosmochimica Acta 72(8):20482066.CrossRefGoogle Scholar
Conrad, R, Claus, P, Casper, P. 2009. Characterization of stable isotope fractionation during methane production in the sediment of a eutrophic lake, Lake Dagow, Germany. Limnology and Oceanography 54(2):457471.CrossRefGoogle Scholar
Dean, WE. 1999. The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology 21(4):375393.CrossRefGoogle Scholar
Esmeijer-Liu, AJ, Kürschner, WM, Lotter, AF, Verhoeven, JTA, Goslar, T. 2012. Stable carbon and nitrogen isotopes in a peat profile are influenced by early stage diagenesis and changes in atmospheric CO2 and N deposition. Water, Air, and Soil Pollution 223(5):20072022.CrossRefGoogle Scholar
Ežerinskis, Ž, Šapolaitė, J, Pabedinskas, A, Juodis, L, Garbaras, A, Maceika, E, Druteikienė, R, Lukauskas, D, Remeikis, V. 2018. Annual variations of 14C concentration in the tree rings in the vicinity of Ignalina Nuclear Power Plant. Radiocarbon 60(4):12271236.CrossRefGoogle Scholar
Fontes, JC, Gasse, F, Gibert, E. 1996. Holocene environmental changes in Lake Bangong Basin (western Tibet). Part 1: chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology 120(1–2):2547.CrossRefGoogle Scholar
Gale, PM, Reddy, KR, Graetz, DA. 1992. Mineralization of sediment organic matter under anoxic conditions. Journal of Environmental Quality 21(3):394400.CrossRefGoogle Scholar
Geyh, MA, Grosjean, M, Núñez, L, Schotterer, U. 1999. Radiocarbon reservoir effect and the timing of the Late-Glacial/Early Holocene humid phase in the Atacama Desert (northern Chile). Quaternary Research 52(2):143153.CrossRefGoogle Scholar
Grimm, EC. 1992. Tilia and Tilia-graph: pollen spreadsheet and graphics programs. Programs and Abstracts, 8th International Palynological Congress, Aix-en-Provence, September 6–12, 1992. p. 56.Google Scholar
Guobyte, R. 2004. A brief outline of the Quaternary of Lithuania and the history of its investigation. Developments in Quaternary Science 2:245250.CrossRefGoogle Scholar
Heil, CA. 2005. Influence of humic, fulvic and hydrophilic acids on the growth, photosynthesis and respiration of the Dinoflagellate Prorocentrum Minimum (Pavillard) Schiller. Harmful Algae 4(3):603618.CrossRefGoogle Scholar
Heiri, O, Lotter, AF, Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1):101110.CrossRefGoogle Scholar
Hendy, CH, Hall, BL. 2006. The radiocarbon reservoir effect in proglacial lakes: examples from Antarctica. Earth and Planetary Science Letters 241(3–4):413421.CrossRefGoogle Scholar
Hillman, AL, Abbott, MB, Yu, JQ, Steinman, BA, Bain, DJ. 2016. The isotopic response of Lake Chenghai, SW China, to hydrologic modification from human activity. Holocene 26(6):906916.CrossRefGoogle Scholar
Hodell, DA, Brenner, M, Kanfoush, SL, Curtis, JH, Stoner, JS, Xueliang, S, Yuan, W, Whitmore, TJ. 1999. Paleoclimate of southwestern China for the past 50,000 yr inferred from lake sediment records. Quaternary Research 52(3):369380.CrossRefGoogle Scholar
Hou, J, D’Andrea, WJ, Liu, Z. 2012. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews 48:6779.CrossRefGoogle Scholar
Klemola, S, Holm, ÓH, Mattila, A, Nielsen, SP, Ramebäck, H, Jónsson, G. 2014. In: GammaUser 2014 Proceedings, 6–8 October 2014 Helsinki, Finland. Report Nr. NKS-325.Google Scholar
Kracht, O, Gleixner, G. 2000. Isotope analysis of pyrolysis products from sphagnum peat and dissolved organic matter from bog water. Organic Geochemistry 31(7–8):645654.Google Scholar
Lamb, AL, Leng, MJ, Mohammed, MU, Lamb, HF. 2004. Holocene climate and vegetation change in the main Ethiopian Rift Valley, inferred from the composition (C/N and Δ13C) of lacustrine organic matter. Quaternary Science Reviews 23(7–8):881891.CrossRefGoogle Scholar
Lami, A, Niessen, F, Guilizzoni, P, Masaferro, J, Belis, CA. 1994. Palaeolimnological studies of the Eutrophication of volcanic Lake Albano (central Italy). Journal of Paleolimnology 10(3):181197.CrossRefGoogle Scholar
Lehmann, J, Kleber, M. 2015. The contentious nature of soil organic matter. Nature 528(7580):6068.CrossRefGoogle ScholarPubMed
Lehmann, M, Bernasconi, S, Barbieri, A, McKenzie, J, Ambientali, LS, Pradiso, R, Lehmann, M, Bernasconi, S, Barbieri, A, McKenzie, J. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta 66(20):35733584.CrossRefGoogle Scholar
Li, Y, Qiang, M, Zhang, J, Huang, X, Zhou, A, Chen, J, Wang, G, Zhao, Y. 2017. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, northwestern China. Quaternary International 452:91101.CrossRefGoogle Scholar
Lorenzen, C. 1967. Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnology and Oceanography 12(2):343346.CrossRefGoogle Scholar
Marčiulioniene, D, Mažeika, J, Lukšiene, B, Jefanova, O, Mikalauskiene, R, Paškauskas, R. 2015. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant. Journal of Environmental Radioactivity 145:4857.CrossRefGoogle ScholarPubMed
Meinelt, T, Schreckenbach, K, Pietrock, M, Heidrich, S, Steinberg, CEW. 2008. Humic substances – part 1: dissolved humic substances (HS) in aquaculture and ornamental fish breeding. Environmental Science and Pollution Research 15(1):1722.CrossRefGoogle ScholarPubMed
Meyers, PA. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27:213250.CrossRefGoogle Scholar
Mikomägi, A, Punning, J-M. 2007. Fossil pigments in surface sediments of some Estonian lakes. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 56(3):239250.Google Scholar
Mischke, S, Weynell, M, Zhang, C, Wiechert, U. 2013. Spatial variability of 14C reservoir effects in Tibetan Plateau Lakes Steffen. Quaternary International 313–314:147155.CrossRefGoogle Scholar
Miller, U, Florin, MB. 1989. Diatom analysis, introduction to methods and applications. Paleoecological Analysis of Circumpolar Treeline 24:133157.Google Scholar
Moisejenkova, A, Tarasiuk, N, Koviazina, E, Maceika, E, Girgždys, A. 2012. 137Cs in Lake Tapeliai, Lithuania. Lithuanian Journal of Physics 52(3):238252.CrossRefGoogle Scholar
Myneni, SCB, Brown, JT, Martinez, GA, Meyer-Ilse, W. 1999. Imaging of humic substance macromolecular structures in water and soils. Science 286(5443):13351337.CrossRefGoogle ScholarPubMed
Nielsen, SP, Rand, A, Bjerk, T, Ramebäck, H, Pöllänen, R, Jónsson, G. 2017. In: GammaSpec 2017 Proceedings, 19–20 September 2017, Risø, Denmark. Report Nr. NKS-398.Google Scholar
Penning, H, Claus, P, Casper, P, Conrad, R. 2006. Carbon isotope fractionation during acetoclastic methanogenesis by Methanosaeta concilii in culture and a lake sediment. Applied and Environmental Microbiology 72(8):56485652.CrossRefGoogle Scholar
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1(1):124.CrossRefGoogle Scholar
Piotrowska, N, de Vleeschouwer, F, Sikorski, J, Pawlyta, J, Fagel, N, le Roux, G, Pazdur, A. 2010. Intercomparison of radiocarbon bomb pulse and 210Pb age models. A study in a peat bog core from north Poland. Nuclear Instruments and Methods in Physics Research B 268(7–8):11631166.CrossRefGoogle Scholar
Schellekens, J, Buurman, P, Kalbitz, K, van Zomeren, A, Vidal-Torrado, P, Cerli, C, Comans, RNJ. 2017. Molecular features of humic acids and fulvic acids from contrasting environments. Environmental Science and Technology 51(3):13301339.CrossRefGoogle ScholarPubMed
Schneider, L, Pain, CF, Haberle, S, Blong, R, Alloway, BV, Fallon, SJ, Hope, G, Zawadzki, A, Heijnis, H. 2018. Evaluating the radiocarbon reservoir effect in Lake Kutubu, Papua New Guinea. Radiocarbon 61(1):287308.CrossRefGoogle Scholar
Šeiriene, V, Kabailiene, M, Kasperovičiene, J, Mažeika, J, Petrošius, R, Paškauskas, R. 2009. Reconstruction of postglacial palaeoenvironmental changes in eastern Lithuania: evidence from lacustrine sediment data. Quaternary International 207(1–2):5868.CrossRefGoogle Scholar
Stancikaite, M, Baltrunas, V, Sinkunas, P, Kisieliene, D, Ostrauskas, T. 2006. Human response to the Holocene environmental changes in the Biržulis Lake Region, NW Lithuania. Quaternary International 150(1):113129.CrossRefGoogle Scholar
Stancikaite, M, Kabailiene, M, Ostrauskas, T, Guobyte, R. 2002. Environment and Man around Lakes Dūba and Pelesa, SE Lithuania, during the Late Glacial and Holocene. Geological Quarterly 46(4):391409.Google Scholar
Stancikaite, M, Kisieliene, D, Strimaitiene, A. 2004. Vegetation response to the climatic and human impact changes during the Late Glacial and Holocene: case study of the marginal area of Baltija Upland, NE Lithuania. Baltica 17(1):1733.Google Scholar
Swain, EB. 1985. Measurement and interpretation of sedimentary pigments. Freshwater Biology 15(1):5375.CrossRefGoogle Scholar
Strickland, JDM, Parsons, TR. 1972. A practical handbook of seawater analysis. 2nd ed. Ottawa (ON): Fisheries Research Board of Canada. p. 185203.Google Scholar
Tarasiuk, N, Moisejenkova, A, Koviazina, E, Karpicz, R, Astrauskiene, N. 2009. On the radiocesium behavior in a small humic lake (Lithuania). Nukleonika 54(3):211220.Google Scholar
Tarasiuk, N, Moisejenkova, A, Pečiulienė, M, Jasaitis, D, Girgždys, A. 2015. Peculiarities of thermal regime formation of near-bottom lake water. Polish Journal of Environmental Studies 24(6):26552662.CrossRefGoogle Scholar
Torres, IC, Inglett, PW, Brenner, M, Kenney, WF, Reddy, KR. 2012. Stable Isotope (Δ13C and Δ15N) Values of Sediment Organic Matter in Subtropical Lakes of Different Trophic Status. Journal of Paleolimnology 47(4):693706.CrossRefGoogle Scholar
Tranvik, LJ, Downing, JA, Cotner, JB, Loiselle, SA, Striegl, RG, Ballatore, TJ, Dillon, P, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54(6-2):22982314.CrossRefGoogle Scholar
VanDam, H, Mertens, A, Sinkeldam, J. 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Netherlands Journal of Aquatic Ecology 28(1):117133.Google Scholar
Vreca, P, Muri, G. 2006. Changes in accumulation of organic matter and stable carbon and nitrogen isotopes in sediments of two Slovenian mountain lakes (Lake Ledvica and Lake Planina), induced by eutrophication changes. Limnology and Oceanography 51(1-2):781790.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931934.CrossRefGoogle Scholar
Wang, J, Chen, G, Kang, W, Hu, K, Wang, L. 2019. Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of southwest China. Water Research 148:162175.CrossRefGoogle Scholar
Wang, X, Wang, J, Zhang, J. 2012. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS ONE 7(8):e44334.CrossRefGoogle ScholarPubMed
Wang, Y, Das, O, Xu, X, Liu, J, Jahan, S, Means, GH, Donoghue, J, Jiang, S. 2018. Implications of radiocarbon ages of organic and inorganic carbon in coastal lakes in Florida for establishing a reliable chronology for sediment-based paleoclimate reconstruction. Quaternary Research (2018):112.Google Scholar
Waters, MN, Schelske, CL, Kenney, WF, Chapman, AD. 2005. The use of sedimentary algal pigments to infer historic algal communities in Lake Apopka, Florida. Journal of Paleolimnology 33(1):5371.CrossRefGoogle Scholar
Williamson, CE, Saros, JE, Vincent, WF, Smol, JP. 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography 54(6-2):22732282.CrossRefGoogle Scholar
Winogradow, A, Pempkowiak, J. 2018. Characteristics of sedimentary organic matter in coastal and depositional areas in the Baltic Sea. Estuarine, Coastal and Shelf Science 204: 6675.CrossRefGoogle Scholar
Woszczyk, M, Grassineau, N, Tylmann, W, Kowalewski, G, Lutyńska, M, Bechtel, A. 2014. Stable C and N isotope record of short term changes in water level in lakes of different morphometry: Lake Anastazewo and Lake Skulskie, Central Poland. Organic Geochemistry 76(1):278287.Google Scholar
Xie, S, Nott, CJ, Avsejs, LA, Maddy, D, Chambers, FM, Evershed, RP. 2004. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction. Geochimica et Cosmochimica Acta 68(13):28492862.CrossRefGoogle Scholar
Zhang, C, Zhao, C, Zhou, A, Zhang, K, Wang, R, Shen, J. 2019. Late Holocene Lacustrine Environmental and Ecological Changes Caused by Anthropogenic Activities in the Chinese Loess Plateau. Quaternary Science Reviews 203: 266277.CrossRefGoogle Scholar
Zhou, A, He, Y, Wu, D, Zhang, X, Zhang, C, Liu, Z, Yu, J. 2015. Changes in the radiocarbon reservoir age in Lake Xingyun, southwestern China during the Holocene. PLoS ONE 10(3):e0121532.CrossRefGoogle ScholarPubMed
Zhou, AF, Chen, FH, Wang, ZL, Yang, ML, Qiang, MR, Zhang, JW. 2009. Temporal change of radiocarbon reservoir effect in Sugan Lake, northwest China during the Late Holocene. Radiocarbon 51(2):529535.CrossRefGoogle Scholar
Zhou, W, Cheng, P, Jull, AJT, Lu, X, An, Z, Wang, H, Zhu, Y, Wu, Z. 2014. 14C chronostratigraphy for Qinghai Lake in China. Radiocarbon 56(1):143155.CrossRefGoogle Scholar