Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T13:15:31.903Z Has data issue: false hasContentIssue false

Textiles and Radiocarbon Dating

Published online by Cambridge University Press:  09 February 2016

Irka Hajdas*
Affiliation:
Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
Carlo Cristi
Affiliation:
Arte Orientale Tessili, Milano, Italy, and Brussels, Belgium
Georges Bonani
Affiliation:
Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
Mantana Maurer
Affiliation:
Ion Beam Physics, ETH Zurich, Otto-Stern-Weg 5, 8093 Zurich, Switzerland
*
2. Corresponding author. Email: [email protected].

Abstract

Natural textiles provide suitable material for radiocarbon dating. Short-lived organic matter is usually involved and, if 14C dating is applied to pieces that are stylistically well dated, a better understanding of 14C dating of this type of material can be gained. This study presents some examples of dating that support the stylistic dates. Repeated analyses illustrate the robustness of the standard treatment applied to the textiles.

Type
Methodology: Generaland Bones
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Yosef, O. 2011. Climatic fluctuations and early farming in West and East Asia. Current Anthropology 52(S4):S175S193.Google Scholar
Bonani, G, Beer, J, Hofmann, H, Synal, H-A, Suter, M, Wölfli, W, Pfleiderer, C, Junghans, C, Münnich, KO. 1987. Fractionation, precision and accuracy in 14C and 13C measurements. Nuclear Instruments and Methods in Physics Research B 29(1–2):8790.Google Scholar
Boudin, M, Boeckx, P, Buekenhoudt, A, Vandenabeele, P, Van Strydonck, M. 2013. Development of a nanofiltration method for bone collagen 14C AMS dating. Nuclear Instruments and Methods in Physics Research B 294:233–9.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Damon, PE, Donahue, DJ, Gore, BH, Hatheway, AL, Jull, AJT, Linick, TW, Sercel, PJ, Toolin, LJ, Bronk, CR, Hall, ET, Hedges, REM, Housley, R, Law, IA, Perry, C, Bonani, G, Trumbore, S, Woelfli, W, Ambers, JC, Bowman, SGE, Leese, MN, Tite, MS. 1989. Radiocarbon dating of the Shroud of Turin. Nature 337(6208):611–5.Google Scholar
De Moor, A, Verhecken-Lammens, C, Verhecken, A. 2008. 3500 Years of Textile Art. Antwerp: The Collection ARTheadquARTers. p 104–5.Google Scholar
Good, I. 2001. Archaeological textiles: a review of current research. Annual Review of Anthropology 30: 209–26.Google Scholar
Hajdas, I. 2008. The radiocarbon dating method and its applications in Quaternary studies. Quaternary Science Journal - Eiszeitalter und Gegenwart 57:224.Google Scholar
Hajdas, I, Bonani, G, Thut, H, Leone, G, Pfenninger, R, Maden, C. 2004. A report on sample preparation at the ETH/PSI AMS facility in Zurich. Nuclear Instruments and Methods in Physics Research B 223–224:267–71.Google Scholar
Jull, A, Donahue, D, Damon, P, Orna, M. 1996. Factors that affect the apparent radiocarbon age of textiles. In: Archaeological Chemistry. ACS Symposium Series, Volume 625. Washington, DC: American Chemical Society. p 248–53.Google Scholar
Kim, K, Southon, J, Imamura, M, Sparks, R. 2008. Development of sample pretreatment of silk for radiocarbon dating. Radiocarbon 50(1):131–8.Google Scholar
Kuzmin, Y, Keally, C, Jull, A, Burr, G, Klyuev, N. 2012. The earliest surviving textiles in East Asia from Chertovy Vorota Cave, Primorye Province, Russian Far East. Antiquity 86(332):325–37.Google Scholar
Kvavadze, E. 2009. 30,000-year-old wild flax fibers (vol 325, pg 1359, 2009). Science 326(5951):366.Google Scholar
Possnert, G, Edgren, T. 1997. Radiocarbon dating of textiles. In: Edgren, T, Jungner, H, editors. Proceedings of the VII Nordic Conference on the Application of Scientific Methods in Archaeology. Helsinki: Finnish Antiquarian Society. p 41.Google Scholar
Rageth, J. 2004. Radiocarbon dating of textiles. Orientations 35(4):5762.Google Scholar
Reimer, P, Baillie, M, Bard, E, Bayliss, A, Beck, J, Bertrand, C, Blackwell, P, Buck, C, Burr, G, Cutler, K, Damon, P, Edwards, R, Fairbanks, R, Friedrich, M, Guilderson, T, Hogg, A, Hughen, K, Kromer, B, McCormac, G, Manning, S, Ramsey, C, Reimer, R, Remmele, S, Southon, J, Stuiver, M, Talamo, S, Taylor, F, van der Plicht, J, Weyhenmeyer, C. 2004. IntCal04 terrestrial radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46(3):1029–58.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Ruff, M, Fahrni, S, Gäggeler, HW, Hajdas, I, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010. On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon 52(4):1645–56.Google Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259(1):713.CrossRefGoogle Scholar
Van Strydonck, M, Bénazeth, D. 2014. Four Coptic textile from the Louvre collection 14C redated after 55 years. Radiocarbon 56(1):15.Google Scholar
Van Strydonck, M, De Moor, A, Bénazeth, D. 2004. 14C dating compared to art historical dating of Roman and Coptic textiles from Egypt. Radiocarbon 46(1):231–44.Google Scholar
Wacker, L, Němec, M, Bourquin, J. 2010. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931–4.Google Scholar