Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:48:08.742Z Has data issue: false hasContentIssue false

Successfully Dating Rock Art in Southern Africa Using Improved Sampling Methods and New Characterization and Pretreatment Protocols

Published online by Cambridge University Press:  09 September 2016

A Bonneau*
Affiliation:
Laboratoire Lux /Geotop, Earth and Atmospheric Sciences Department, Université du Québec à Montréal, Montreal, Canada Rock Art Research Institute, GAES, University of the Witwatersrand, Johannesburg, South Africa Centre interuniversitaire d'études sur les lettres, les arts et les traditions, Université du Québec à Montréal, Montreal, Canada
R A Staff
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, United Kingdom
T Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, United Kingdom
F Brock
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford, United Kingdom Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, United Kingdom
D G Pearce
Affiliation:
Rock Art Research Institute, GAES, University of the Witwatersrand, Johannesburg, South Africa
P J Mitchell
Affiliation:
Rock Art Research Institute, GAES, University of the Witwatersrand, Johannesburg, South Africa School of Archaeology, University of Oxford, St Hugh’s College, Oxford, United Kingdom and GAES, University of the Witwatersrand, South Africa
*
Corresponding author: [email protected].

Abstract

Worldwide, dating rock art is difficult to achieve because of the frequent lack of datable material and the difficulty of removing contamination from samples. Our research aimed to select the paints that would be the most likely to be successfully radiocarbon dated and to estimate the quantity of paint needed depending on the nature of the paint and the weathering and alteration products associated with it. To achieve this aim, a two-step sampling strategy, coupled with a multi-instrument characterization (including SEM-EDS, Raman spectroscopy, and FTIR spectroscopy analysis) and a modified acid-base-acid (ABA) pretreatment, was created. In total, 41 samples were dated from 14 sites in three separate regions of southern Africa. These novel protocols ensure that the 14C chronology produced was robust and could also be subsequently applied to different regions with possible variations in paint preparation, geology, weathering conditions, and contaminants.

Type
Chemical Pretreatment Approaches
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Current address: Laboratoire d’archéologie historique, Laval University, 3 rue de la Vieille-Université (Pavillon Camille-Roy), Quebec City, Canada, and Centre interuniversitaire d'études sur les lettres, les arts et les traditions, Laval University, Quebec City, Canada.

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Aubert, M, Brumm, A, Ramli, M, Sutikna, T, Saptomo, EW, Hakim, B, Morwood, MJ, van den Bergh, GD, Kinsley, L, Dosseto, A. 2014. Pleistocene cave art from Sulawesi, Indonesia. Nature 514(7521):223227.Google Scholar
Beck, L, Genty, D, Lahlil, S, Lebon, M, Tereygeol, F, Vignaud, C, Reiche, I, Lambert, E, Valladas, H, Kaltnecker, E. 2013. Non-destructive portable analytical techniques for carbon in-situ screening before sampling for dating prehistoric rock paintings. Radiocarbon 55(2):436444.Google Scholar
Beck, L, Rousselière, H, Castaing, J, Duran, A, Lebon, M, Moignard, B, Plassard, F. 2014. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art. Talanta 129:459464.Google Scholar
Blundell, G. 2004. Nqabayo’s Nomansland: San Rock Art and the Somatic Past. Uppsala: African and Comparative Archaeology, Department of Archaeology and Ancient History, Uppsala University.Google Scholar
Bonneau, A, Brock, F, Higham, T, Pearce, DG, Pollard, AM. 2011. An improved pretreatment protocol for radiocarbon dating black pigments in San rock art. Radiocarbon 53(3):419428.Google Scholar
Bonneau, A, Pearce, DG, Pollard, AM. 2012. A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. Journal of Archaeological Science 39(2):287294.Google Scholar
Bonneau, A, Pearce, DG, Mitchell, PJ, Staff, RA, Arthur, C, Mallen, L, Brock, F, Higham, T. 2016. Direct dating reveals earliest evidence for parietal rock art in southern Africa. Antiquity. In press.Google Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.Google Scholar
Coccato, A, Jehlicka, J, Moens, L, Vandenabeele, P. 2015. Raman spectroscopy for the investigation of carbon-based black pigments. Journal of Raman Spectroscopy 46(10):10031015.Google Scholar
David, B, Geneste, JM, Petchey, F, Delannoy, JJ, Barker, B, Eccleston, M. 2013. How old are Australia’s pictographs? A review of rock art dating. Journal of Archaeological Science 40(1):310.Google Scholar
Garate, D, Laval, É, Menu, M. 2004. Étude de la matière colorante de la grotte d’Arenaza (Galdames, Pays Basque, Espagne). L’Anthropologie 108(2):251289.Google Scholar
Gillespie, R. 1997. On human blood, rock art and calcium oxalate: further studies on organic carbon content and radiocarbon age of materials relating to Australian rock art. Antiquity 71(272):430437.Google Scholar
Hellstrom, J. 2012. Absolute dating of cave art. Science 336(6087):13871388.Google Scholar
Hoerlé, S, Pearce, DG, Bertrand, L, Sandt, C, Menu, M. 2016. Imaging the layered fabric of paints from Nomansland rock art (South Africa). Archaeometry. DOI: 10.1111/arcm.12235.Google Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 cal yr BP. Radiocarbon 55(4):18891903.Google Scholar
King, R, Arthur, C, Mitchell, PJ. 2014. Ha Makoanyane: the archaeology and history of colonial transitions in Lesotho. Southern African Humanities 25:5781.Google Scholar
Lahlil, S, Lebon, M, Beck, L, Rousseliere, H, Vignaud, C, Reiche, I, Menu, M, Paillet, P, Plassard, F. 2012. The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. Journal of Raman Spectroscopy 43(11):16371643.Google Scholar
Lemaitre, S. 2013. Kekeewin ou Kekeenowin: les peintures rupestres de l’est du bouclier canadien. Mascouche: Recherches amérindiennes au Québec.Google Scholar
Lewis-Williams, JD, Pearce, DG. 2004. San Spirituality: Roots, Expression, and Social Consequences. Walnut Creek: AltaMira Press.Google Scholar
Mazel, AD, Watchman, AL. 1997. Accelerator radiocarbon dating of Natal Drakensberg paintings: results and implications. Antiquity 71(272):445449.Google Scholar
Mazel, AD, Watchman, AL. 2003. Dating rock paintings in the uKhahlamba-Drakensberg and the Biggarsberg, KwaZulu-Natal, South Africa. Southern African Humanities 15:5973.Google Scholar
Mitchell, PJ. 1993. Archaeological investigations at two Lesotho rock-shelters: Terminal Pleistocene/Early Holocene assemblages from Ha Makotoko and Ntloana Tsoana. Proceedings of the Prehistoric Society 59:3960.Google Scholar
Mitchell, PJ. 1994. The archaeology of the Phuthiatsana-ea-Thaba Bosiu Basin, Lesotho, southern Africa: changes in Later Stone Age regional demography. Antiquity 68(258):8396.Google Scholar
Mitchell, PJ, Arthur, C. 2014. Ha Makotoko: Later Stone Age occupation across the Pleistocene/Holocene transition in western Lesotho. Journal of African Archaeology 12(2):205232.Google Scholar
Mitchell, PJ, Whitelaw, G. 2005. The archaeology of southernmost Africa from c. 2000 BP to the early 1800s: a review of recent research. The Journal of African History 46(2):209241.Google Scholar
Motuzaite-Matuzeviciute, G, Staff, RA, Hunt, HV, Liu, X, Jones, MK. 2013. The early chronology of broomcorn millet (Panicum miliaceum) in Europe. Antiquity 87(338):10731085.Google Scholar
Nelson, DE, Chaloupka, G, Chippindale, C, Alderson, MS, Southon, JR. 1995. Radiocarbon dates for beeswax figures in the prehistoric rock art of northern Australia. Archaeometry 37(1):151156.Google Scholar
Opperman, H. 1987. The Later Stone Age of the Drakensberg Range and Its Foothills. British Archaeological Reports 19. Oxford: Archaeopress.Google Scholar
Opperman, H. 1996. Excavation of a Later Stone Age deposit in Strathalan Cave A, Maclear District, Northeastern Cape, South Africa. In: Pwiti G, Soper R, editors. Aspects of African Archaeology. Harare: University of Zimbabwe Press. p 335342.Google Scholar
Opperman, H, Heydenrych, B. 1990. A 22 000 year-old Middle Stone Age camp site with plant food remains from the North-Eastern Cape. South African Archaeological Bulletin 45(152):9399.Google Scholar
Pettitt, P, Pike, A. 2007. Dating European Palaeolithic cave art: progress, prospects, problems. Journal of Archaeological Method and Theory 14(1):2747.Google Scholar
Prinsloo, LC, Barnard, W, Meiklejohn, I, Hall, K. 2008. The first Raman spectroscopic study of San rock art in the Ukhahlamba Drakensberg Park, South Africa. Journal of Raman Spectroscopy 39(5):646654.Google Scholar
Quiles, A, Valladas, H, Geneste, J-M, Clottes, J, Baffler, D, Berthier, B, Brock, F, Bronk Ramsey, C, Delqué-Količ, E, Dumoulin, J-P, Hajdas, I, Hippe, K, Hodgins, GWL, Hogg, A, Jull, AJT, Kaltnecker, E, De Martino, M, Oberlin, C, Petchey, F, Steier, P, Synal, H-A, van der Plicht, J, Wild, EM, Zazzo, A. 2014. Second Radiocarbon Intercomparison Program for the Chauvet pont d’Arc Cave, Ardèche, France. Radiocarbon 56(2):833850.Google Scholar
Quiles, A, Valladas, H, Bocherens, H, Delqué-Količ, E, Kaltnecker, E, van der Plicht, J, Delannoy, J-J, Feruglio, V, Fritz, C, Monney, J, Philippe, M, Tosello, G, Clottes, J, Geneste, J-M. 2016. A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d’Arc, Ardèche, France. Proceedings of the National Academy of Sciences of the USA 113(17):46704675.Google Scholar
Smits, LGA. 1983. Rock paintings in Lesotho: site characteristics. The South African Archaeological Bulletin 38(138):6276.Google Scholar
Staff, RA, Reynard, L, Brock, F, Bronk Ramsey, C. 2014. Wood pretreatment protocols and meassurement of tree-ring strandards at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 56(2):709715.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Tomasini, E, Siracusano, G, Maier, MS. 2012. Spectroscopic, morphological and chemical characterization of historic pigments based on carbon. Paths for the identification of an artistic pigment. Microchemical Journal 102:2837.Google Scholar
Tournié, A, Prinsloo, LC, Paris, C, Colomban, P, Smith, B. 2011. The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. Journal of Raman Spectroscopy 42(3):399406.Google Scholar
Valladas, H. 2003. Direct radiocarbon dating of prehistoric cave paintings by accelerator mass spectrometry. Measurement Science and Technology 14(9):14871492.Google Scholar
Valladas, H, Tisnérat-Laborde, N, Cachier, H, Arnold, M, de Quiros, FB, Cabrera-Valdes, V, Clottes, J, Courtin, J, Fortea-Perez, JJ, Gonzalez-Sainz, C, Moure-Romanillo, A. 2001. Radiocarbon AMS dates for Paleolithic cave paintings. Radiocarbon 43(2B):977986.Google Scholar
Valladas, H, Kaltnecker, E, Quiles, A, Tisnérat-Laborde, N, Genty, D, Arnold, M, Delqué-Količ, E, Moreau, C, Baffier, D, Cleyet Merle, JJ, Clottes, J, Girard, M, Monney, J, Montes, R, Sainz, C, Sanchidrian, JL, Simonnet, R. 2013. Dating French and Spanish prehistoric decorated caves in their archaeological contexts. Radiocarbon 55(3):14221431.Google Scholar
van der Merwe, NJ, Sealy, J, Yates, R. 1987. First accelerator carbon-14 date for pigment from a rock painting. South African Journal of Science 83(1):5657.Google Scholar
Walker, NJ. 2009. Archaeological Mitigation Measures for the Thune Dam Construction and Associated Works. Gaborone: Water Resources Consultants for the Republic of Botswana, Ministry of Minerals, Energy and Water Resources. 75 p.Google Scholar
Watchman, A. 1990. A summary of occurrences of oxalate-rich crusts in Australia. Rock Art Research 7(1):4450.Google Scholar