Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T01:11:07.585Z Has data issue: false hasContentIssue false

Structural Characterization and Thermal Decomposition of Lime Binders Allow Accurate Radiocarbon Age Determinations of Aerial Lime Plaster

Published online by Cambridge University Press:  27 May 2020

Michael B Toffolo*
Affiliation:
Institut de Recherche sur les Archéomatériaux-Centre de Recherche en Physique Appliquée à l’Archéologie (IRAMAT-CRP2A), UMR 5060 CNRS, Université Bordeaux Montaigne, 8 Esplanade des Antilles, Pessac33607, France
Lior Regev
Affiliation:
D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
Eugenia Mintz
Affiliation:
D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
Ifat Kaplan-Ashiri
Affiliation:
Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
Francesco Berna
Affiliation:
Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BCV5A 1S6, Canada
Stéphan Dubernet
Affiliation:
Institut de Recherche sur les Archéomatériaux-Centre de Recherche en Physique Appliquée à l’Archéologie (IRAMAT-CRP2A), UMR 5060 CNRS, Université Bordeaux Montaigne, 8 Esplanade des Antilles, Pessac33607, France
Xin Yan
Affiliation:
D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
Johanna Regev
Affiliation:
D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
Elisabetta Boaretto
Affiliation:
D-REAMS Radiocarbon Dating Laboratory, Weizmann Institute of Science, 234 Herzl Street, Rehovot7610001, Israel
*
*Corresponding author. Email: [email protected].

Abstract

Radiocarbon (14C) dating of anthropogenic carbonates (CaCO3) such as ash, lime plaster and lime mortar, has proven a difficult task due to the occurrence of a number of contaminants embedded within the CaCO3 pyrogenic binder. These include 14C-free geologic components and/or secondary phases bearing an unknown amount of 14C, and thus the alteration of the original pyrogenic isotopic signature of the material results in major age offsets when carbon recovery is performed through acid hydrolysis. Here we present a characterization/quantification approach to anthropogenic carbonates that includes Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, thin section petrography, thermogravimetric analysis and scanning electron microscopy coupled with high-resolution cathodoluminescence, with which we identified the pyrogenic CaCO3 fraction in an aerial lime plaster and two hydraulic mortars. The preserved pyrogenic component was then isolated by density separation and its purity checked again using FTIR. Carbon was recovered through thermal decomposition in vacuum. The resulting 14C age matches the expected age of the lime plaster, whereas hydraulic mortars are slightly offset due to the carbonation of calcium hydroxide lumps. This approach highlights the importance of a dedicated characterization strategy prior to dating and may be applied to aerial lime plasters to obtain accurate ages.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the Mortar Dating International Meeting, Pessac, France, 25–27 Oct. 2018

References

REFERENCES

Addis, A, Secco, M, Preto, N, Marzaioli, F, Passariello, I, Brogiolo, GP, Chavarria Arnau, A, Artioli, G, Terrasi, F. 2016. New strategies for radiocarbon dating of mortars: Multi-step purification of the lime binder. In: Papayianni I, Stefanidou M, Pachta V, editors. Proceedings of the 4th Historic Mortar Conference, 10–12 October 2016, Santorini. p. 665–672.Google Scholar
Addis, A, Secco, M, Marzaioli, F, Artioli, G, Chavarria Arnau, A, Passariello, I, Terrasi, F, Brogiolo, GP. 2019. Selecting the most reliable 14C dating material inside mortars: the origin of the Padua Cathedral. Radiocarbon 61(2):375393.CrossRefGoogle Scholar
Anastasiou, M, Hasapis, T, Zorba, T, Pavlidou, E, Chrissafis, K, Paraskevopoulos, KM. 2006. TG-DTA and FTIR analyses of plasters from Byzantine monuments in Balkan region. Journal of Thermal Analysis and Calorimetry 84(1):2732.CrossRefGoogle Scholar
Artioli, G. 2010. Scientific methods and cultural heritage: An introduction to the application of materials science to archaeometry and conservation science. Oxford: Oxford University Press.CrossRefGoogle Scholar
Artioli, G, Secco, M, Addis, A, Bellotto, M. 2017. Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating. In: Pöllmann, H, editor. Cementitious materials: Composition, properties, application. Berlin: De Gruyter. p. 147158.CrossRefGoogle Scholar
Avni, G. 2014. The Byzantine-Islamic transition in Palestine: an archaeological approach. Oxford: Oxford University Press.CrossRefGoogle Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225:937938.CrossRefGoogle ScholarPubMed
Berna, F, Goldberg, P, Kolska Horwitz, L, Brink, J, Holt, S, Bamford, M, Chazan, M. 2012. Microstratigraphic evidence of insitu fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. PNAS 109:E1215E20.CrossRefGoogle Scholar
Boaretto, E, Poduska, KM. 2013. Materials science challenges in radiocarbon dating: The Case of archaeological plasters. Journal of the Minerals, Metals & Materials Society (TMS) 65:481488.CrossRefGoogle Scholar
Boynton, RS. 1980. Chemistry and technology of lime and limestone. New York: John Wiley & Sons, Inc.Google Scholar
Delibrias, G, Labeyrie, J. 1965. The dating of mortars by the carbon-14 method. In: Chatters RM, Olson EA, editors. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, 7–11 June 1965, Pullman, WA. p 344–347.Google Scholar
Farmer, VC. 1974. The infrared spectra of minerals. London: Mineralogical Society.CrossRefGoogle Scholar
Folk, RL, Valastro, S. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):203208.CrossRefGoogle Scholar
Götze, J. 2012. Application of cathodoluminescence microscopy and spectroscopy in geosciences. Microscopy and Microanalysis 18:12701284.CrossRefGoogle ScholarPubMed
Habermann, D, Neuser, RD, Richter, DK. 2000. Quantitative high resolution analysis of Mn2+ in sedimentary calcite. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D, editors. Cathodoluminescence in Geosciences. Berlin: Springer Verlag. p. 331358.CrossRefGoogle Scholar
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, Å, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanova, P, Guibert, P. 2017. Preparation and dating of mortar samples-Mortar Dating Intercomparison Study (MODIS). Radiocarbon 59(5):114.CrossRefGoogle Scholar
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, Å, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Maspero, F, Panzeri, L, Galli, A, Artioli, G, Addis, A, Secco, M, Boaretto, E, Moreau, C, Guibert, P, Urbanova, P, Czernik, J, Goslar, T, Caroselli, M. 2017. Mortar dating methodology: Assessing recurrent issues and needs for future research. Radiocarbon 59(6):18591871.CrossRefGoogle Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 123:487495.CrossRefGoogle Scholar
Heinemeier, J, Ringbom, Å, Lindroos, A, Sveinbjörndóttir, Á. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Åland Islands, Finland. Radiocarbon 52(1):171204.CrossRefGoogle Scholar
Ishihara, S, Sahoo, P, Deguchi, K, Ohki, S, Tansho, M, Shimizu, T, Labuta, J, Hill, JP, Ariga, K, Watanabe, K, Yamauchi, Y, Suehara, S, Iyi, N. 2013. Dynamic breathing of CO2 by hydrotalcite. Journal of the American Chemical Society 135:1804018043.CrossRefGoogle ScholarPubMed
Karkanas, P. 2007. Identification of lime plaster in prehistory using petrographic methods: a review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology 22:775796.CrossRefGoogle Scholar
Kingery, WD, Vandiver, PB, Prickett, M. 1988. The beginnings of pyrotechnology. Part II: Production and use of lime and gypsum plaster in the pre-pottery Neolithic Near East. Journal of Field Archaeology 15(2):219244.CrossRefGoogle Scholar
Koumouzelis, M, Ginter, B, Kozlowski, JK, Pawlikowski, M, Bar-Yosef, O, Albert, RM, Litynska-Zajac, M, Stworzewicz, E, Wojtal, P, Lipecki, G, Tomek, T, Bochenski, ZM, Pazdur, A. 2001. The early Upper Palaeolithic in Greece: the excavations in Klisoura Cave. Journal of Archaeological Science 28:515539.CrossRefGoogle Scholar
Kusano, N, Nishido, H, Inoue, K. 2014. Cathodoluminescence of calcite decomposed from dolomite in high-temperature skarn. Journal of Mineralogical and Petrological Sciences 109:286290.CrossRefGoogle Scholar
Labeyrie, J, Delibrias, G. 1964. Dating of old mortars by the carbon-14 method. Nature 201:742.CrossRefGoogle Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörndóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49:4767.CrossRefGoogle Scholar
Lippmann, F. 1973. Sedimentary carbonate minerals. Heidelberg: Springer.CrossRefGoogle Scholar
Machel, HG. 2000. Application of cathodoluminescence to carbonate diagenesis. In: Pagel, M, Barbin, V, Blanc, P, Ohnenstetter, D, editors. Cathodoluminescence in geosciences. Berlin: Springer Verlag. p. 271301.CrossRefGoogle Scholar
Michalska, D. 2019. Influence of different pretreatments on mortar dating results. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 456:236246.CrossRefGoogle Scholar
Mills, SJ, Christy, AG, Génin, J-MR, Kameda, T, Colombo, F. 2012. Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine 76(5):12891336.CrossRefGoogle Scholar
Moropoulou, A, Bakolas, A, Bisbikou, K. 1995. Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochimica Acta 269/270:779795.CrossRefGoogle Scholar
Murakami, T, Hodgins, G, Simon, AW. 2013. Characterization of lime carbonates in plasters from Teotihuacan, Mexico: Preliminary results of cathodoluminescence and carbon isotope analyses. Journal of Archaeological Science 40:960970.CrossRefGoogle Scholar
Poduska, KM, Regev, L, Boaretto, E, Addadi, L, Weiner, S, Kronik, L, Curtarolo, S. 2011. Decoupling local disorder and optical effects in infrared spectra: Differentiating between calcites with different origins. Advanced Materials 23:550554.CrossRefGoogle ScholarPubMed
Poduska, KM, Regev, L, Berna, F, Mintz, E, Milevski, I, Khalaily, H, Weiner, S, Boaretto, E. 2012. Plaster characterization at the PPNB site of Yiftahel (Israel) including the use of 14C: implications for plaster production, preservation, and dating. Radiocarbon 54:887896.CrossRefGoogle Scholar
Pöllmann, H. 2017. Cementitious materials: Composition, properties, application. Berlin: De Gruyter.CrossRefGoogle Scholar
Ponce-Antón, G, Ortega, LA, Zuluaga, MC, Alonso-Olazabal, A, Solaun, JL. 2018. Hydrotalcite and hydrocalumite in mortar binders from the medieval Castle of Portilla (Álava, North Spain): Accurate mineralogical control to achieve more reliable chronological ages. Minerals 8:326.CrossRefGoogle Scholar
Regev, L, Poduska, KM, Addadi, L, Weiner, S, Boaretto, E. 2010. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: archaeological applications. Journal of Archaeological Science 37(12):30223029.CrossRefGoogle Scholar
Regev, L, Eckmeier, E, Mintz, E, Weiner, S, Boaretto, E. 2011. Radiocarbon concentrations of wood ash calcite: Potential for dating. Radiocarbon 53(1):117127.CrossRefGoogle Scholar
Regev, L, Steier, P, Shachar, Y, Mintz, E, Wild, EM, Kutschera, W, Boaretto, E. 2017. D-REAMS: A new compact AMS system for radiocarbon measurements at the Weizmann Institute of Science, Rehovot, Israel. Radiocarbon 59:775784.CrossRefGoogle Scholar
Rey, F, Fornés, V, Rojo, JM. 1992. Thermal decomposition of hydrotalcites: An infrared and nuclear magnetic resonance spectroscopic study. Journal of the Chemical Society, Faraday Transactions 88(15):22332238.CrossRefGoogle Scholar
Ringbom, Å, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: Learning from experience. Radiocarbon 56:619635.CrossRefGoogle Scholar
Roelofs, JCAA, van Bokhoven, JA, van Dillen, AJ, Geus, JW, de Jong, KP. 2002. The thermal decomposition of Mg-Al hydrotalcites: Effects of interlayer anions and characteristics of the final structure. Chemistry: A European Journal 8(24):55715579.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Sahoo, P, Ishihara, S, Yamada, K, Deguchi, K, Ohki, S, Tansho, M, Shimizu, T, Eisaku, N, Sasai, R, Labuta, J, Ishikawa, D, Hill, JP, Ariga, K, Bastakoti, BP, Yamauchi, Y, Iyi, N. 2014. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide. Applied Materials and Interfaces 6:1835218359.CrossRefGoogle ScholarPubMed
Stuiver, M, Smith, CS. 1965. Radiocarbon dating of ancient mortar and plaster. In: Chatters RM, Olson EA, editors. Proceedings of the 6th International Conference on Radiocarbon and Tritium Dating, 7–11 June 1965, Pullman, WA. p. 338–343.Google Scholar
Tepper, Y, Erickson-Gini, T, Farhi, Y, Bar-Oz, G. 2018. Probing the Byzantine/Early Islamic transition in the Negev: The renewed Shivta excavations, 2015–2016. Tel Aviv 45(1):120152.CrossRefGoogle Scholar
Tian, J, Qinghai, G. 2014. Thermal decomposition of hydrocalumite over a temperature range of 400–1500°C and its structure reconstruction in water. Journal of Chemistry 2014:454098.CrossRefGoogle Scholar
Toffolo, MB, Boaretto, E. 2014. Nucleation of aragonite upon carbonation of calcium oxide and calcium hydroxide at ambient temperatures and pressures: a new indicator of fire-related human activities. Journal of Archaeological Science 49:237248.CrossRefGoogle Scholar
Toffolo, MB, Regev, L, Mintz, E, Poduska, KM, Shahack-Gross, R, Berthold, C, Miller, CE, Boaretto, E. 2017a. Accurate radiocarbon dating of archaeological ash using pyrogenic aragonite. Radiocarbon 59:231249.CrossRefGoogle Scholar
Toffolo, MB, Ullman, M, Caracuta, V, Weiner, S, Boaretto, E. 2017b. A 10,400-year-old sunken lime kiln from the Early Pre-Pottery Neolithic B at the Nesher-RamLa quarry (el-Khirbe), Israel. Journal of Archaeological Science: Reports 14:353364.Google Scholar
Toffolo, MB, Regev, L, Dubernet, S, Lefrais, Y, Boaretto, E. 2019a. FTIR-based crystallinity assessment of aragonite–calcite mixtures in archaeological lime binders altered by diagenesis. Minerals 9(2):121.CrossRefGoogle Scholar
Toffolo, MB, Ricci, G, Caneve, L, Kaplan-Ashiri, I. 2019b. Luminescence reveals variations in local structural order of calcium carbonate polymorphs formed by different mechanisms. Scientific Reports 9:16170.CrossRefGoogle ScholarPubMed
Uziel, J, Lieberman, T, Solomon, A. 2019. The best show in town: The excavations beneath Wilson’s Arch and their importance in understanding Jerusalem in the early and late Roman periods. Tel Aviv 46(2).CrossRefGoogle Scholar
van der Marel, HW, Beutelspacher, H. 1976. Atlas of infrared spectroscopy of clay minerals and their admixtures. Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
Wassenburg, JA, Immenhauser, A, Richter, DK, Jochum, KP, Fietzke, J, Deininger, M, Goos, M, Scholz, D, Sabaoui, A. 2012. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence. Geochimica et Cosmochimica Acta 92:2347.CrossRefGoogle Scholar
Weiner, S. 2010. Microarchaeology. Beyond the visible archaeological record. New York: Cambridge University Press.CrossRefGoogle Scholar
Xu, B, Toffolo, MB, Regev, L, Boaretto, E, Poduska, KM. 2015. Structural differences in archaeologically relevant calcite. Analytical Methods 7:93049309.CrossRefGoogle Scholar
Xu, B, Toffolo, MB, Boaretto, E, Poduska, KM. 2016. Assessing local and long-range structural disorder in aggregate-free lime binders. Industrial & Engineering Chemistry Research 55:83348340.CrossRefGoogle Scholar
Yeman, C, Christl, M, Hattendorf, B, Wacker, L, Welte, C, Brehm, N, Synal, H-A. 2020. Unravelling quasi-continuous 14C profiles by laser ablation AMS. Radiocarbon 62(2):453465.CrossRefGoogle Scholar
Yizhaq, M, Mintz, G, Cohen, I, Khalaily, H, Weiner, S, Boaretto, E. 2005. Quality controlled radiocarbon dating of bones and charcoal from the early Pre-Pottery Neolitic B (PPNB) of Motza (Israel). Radiocarbon 47(2):193206.CrossRefGoogle Scholar
Zouridakis, N, Saliege, JF, Person, A, Filippakis, SE. 1987. Radiocarbon dating of mortars from ancient Greek palaces. Archaeometry 29(1):60–8.CrossRefGoogle Scholar
Supplementary material: PDF

Toffolo et al. Supplementary Materials

Toffolo et al. Supplementary Materials

Download Toffolo et al. Supplementary Materials(PDF)
PDF 108.5 KB