Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T12:13:47.989Z Has data issue: false hasContentIssue false

STEPPED-COMBUSTION 14C DATING IN LOESS-PALEOSOL SEDIMENT

Published online by Cambridge University Press:  08 April 2020

Peng Cheng*
Affiliation:
Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, 710049, China The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an710061, China Xi’an AMS Center of IEECAS, and Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry and Application, Xi’an710061, China CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an710061, China Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao266061, China
Yunchong Fu
Affiliation:
Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, 710049, China The State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi’an710061, China Xi’an AMS Center of IEECAS, and Shaanxi Provincial Key Laboratory of Accelerator Mass Spectrometry and Application, Xi’an710061, China CAS Center for Excellence in Quaternary Science and Global Change, Chinese Academy of Sciences, Xi’an710061, China
*
*Corresponding author. Email: [email protected].

Abstract

In this study, low temperature (room temperature, 400°C LT) and high temperature (400–900°C HT) of bulk organic carbon samples were dated from two loess and paleosol profiles. The results showed that radiocarbon (14C) dates of the LT were younger than HT fractions, indicating effect of younger contamination from overlying layers. The δ13C variation of the HT fraction appears to respond much more sensitively to climate change, and 14C ages of HT fraction can produce reasonable 14C ages from a younger layer, but it is very difficult to obtain reliable 14C ages from older layer as a result of uncomplete removal of young carbon.

Type
Research Article
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, MB, Stafford, TW. 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45:300311.CrossRefGoogle Scholar
Aitken, MJ. 1998. An introducion to optical dating: The dating of Quaternary sediments by the use of Photon-stimulated Luminescence. In: Aitken, MJ, editor. Oxford University Press. p. 6065.Google Scholar
Beckerheidmann, P, Liu, LW, Scharpenseel, HW. 1988. Radiocarbon dating of organic-matter fractions of a Chinese mollisol. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 151:3739.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6:457474.Google Scholar
Brown, TA, Farwell, GW, Grootes, PM, Schmidt, FH. 1992. Radiocarbon AMS dating of pollen extracted from peat samples. Radiocarbon 34:550556.CrossRefGoogle Scholar
Cheng, H, Edwards, RL, Broecker, WS, Denton, GH, Kong, XG, Wang, YJ, Zhang, R, Wang, XF, 2009. Ice Age terminations. Science 326:248252.CrossRefGoogle ScholarPubMed
Cheng, H, Edwards, RL, Sinha, A, Spotl, C, Yi, L, Chen, ST, Kelly, M, Kathayat, G, Wang, XF, Li, XL, et al. 2016. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534:640.CrossRefGoogle ScholarPubMed
Cheng, P, Burr, GS, Zhou, WJ, Chen, N, Hou, YY, Du, H, Fu, YC, Lu, XF. 2020. The deficiency of organic matter 14C dating in Chinese Loess-paleosol sample. Quaternary Geochronology 56:101051.CrossRefGoogle Scholar
Cheng, P, Zhou, W, Wang, H, Lu, X, Du, H. 2013. 14C dating of total organic carbon in Loess-paleosol using sequential prolysis and accelerator mass spectrometry (AMS). Radiocarbon 55:563570.CrossRefGoogle Scholar
Chorover, J, Amistdadi, MK, Chadwick, OA. 2004. Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt. Geochimica Cosmochimica Acta 68(23): 48594876.CrossRefGoogle Scholar
Dodson, JR, Zhou, WJ. 2000. Radiocarbon dates from a Holocene deposit in southwestern Australia. Radiocarbon 42:229234.CrossRefGoogle Scholar
Dykoski, CA, Edwards, RL, Cheng, H, Yuan, DX, Cai, YJ, Zhang, ML, Lin, YS, Qing, JM, An, ZS, Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233:7186.CrossRefGoogle Scholar
Eusterhues, K, Rumpel, C, Kogel-Knabner, I. 2007. Composition and radiocarbon age of HF-resistant soil organic matter in a Podzol and a Cambisol. Organic Geochemistry 38:13561372.CrossRefGoogle Scholar
Giletblein, N, Marien, G, Evin, J. 1980. Unreliability of 14C dates from organic-matter of soils. Radiocarbon 22:919929.CrossRefGoogle Scholar
Haggi, C, Zech, R, McIntyre, C, Zech, M, Eglinton, TI. 2014. On the stratigraphic integrity of leaf-wax biomarkers in loess paleosols. Biogeosciences 11:24552463.CrossRefGoogle Scholar
Head, M. 1987. Categorisation of organic sediments from archaeological sites. In: Ambrose, WR, Mummery, JMJ, editors. Archaeometry: further Australasian studies. Department of Prehistory, Research School of Pacific Studies, Australian National University, Canberra. p. 143159.Google Scholar
Huang, Y, Li, BC, Bryant, C, Bol, R, Eglinton, G. 1999. Radiocarbon dating of aliphatic hydrocarbons: A new approach for dating passive-fraction carbon in soil horizons. Soil Science Society of America Journal 63:11811187.CrossRefGoogle Scholar
Jull, AJT. 2007. Radiocarbon dating: AMS method. In: Elias, SA, editor. Encyclopedia of Quaternary science. Oxford: Elsevier. p. 29112918.CrossRefGoogle Scholar
Kang, SG, Wang, XL, Lu, YC. 2013. Quartz OSL chronology and dust accumulation rate changes since the Last Glacial at Weinan on the southeastern Chinese Loess Plateau. Boreas 42:815829.Google Scholar
Kleber, M, Mikutta, R, Torn, MS, Jahn, R. 2005. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. European Journal of Soil Science 56:717725.Google Scholar
Lin, BH, Liu, RM. 1992. The stable isotopic evidence of the monsoon evolution during the last 800ka. Chinese Science Bulletin 37:16911693.Google Scholar
Liu, WG, Huang, YS, An, ZS, Clemens, SC, Li, L, Prell, WL, Ning, YF. 2005. Summer monsoon intensity controls C-4/C-3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeography, Palaeoclimatology, Palaeoecology 220:243254.CrossRefGoogle Scholar
Martin, CW, Johnson, WC. 1995. Variation in radiocarbon ages of soil organic-matter fractions from Late Quaternary buried soils. Quaternary Research 43:232237.CrossRefGoogle Scholar
McGeehin, J, Burr, GS, Jull, AJT, Reines, D, Gosse, J, Davis, PT, Muhs, D, Southon, JR. 2001. Stepped-combustion 14C dating of sediment: A comparison with established techniques. Radiocarbon 43:255261.CrossRefGoogle Scholar
Moine, O, Antoine, P, Hatte, C, Landais, A, Mathieu, J, Prud’homme, C, Rousseau, DD. 2017. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Science U.S.A. 114:62096214.CrossRefGoogle ScholarPubMed
Muhs, DR, Ager, TA, Bettis, EA, McGeehin, J, Been, JM, Beget, JE, Pavich, MJ, Stafford, TW, Stevens, DSP. 2003. Stratigraphy and palaeoclimatic significance of Late Quaternary loess-palaeosol sequences of the Last Interglacial-Glacial cycle in central Alaska. Quaternary Science Reviews 22:19471986.CrossRefGoogle Scholar
Muhs, DR, Aleinikoff, JN, Stafford, TW, Kihl, R, Been, J, Mahan, SA, Cowherd, S. 1999. Late Quaternary loess in northeastern Colorado: Part I - Age and paleoclimatic significance. Geological Society of America Bulletin 111:18611875.2.3.CO;2>CrossRefGoogle Scholar
Paul, EA, Follett, RF, Leavitt, SW, Halvorson, A, Peterson, GA, Lyon, DJ. 1997. Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal 61:10581067.CrossRefGoogle Scholar
Perrin, RMS, Willis, EH, Hodge, CAH. 1964. Dating of humus podzols by residual radiocarbon activity. Nature 202:165166.CrossRefGoogle Scholar
Pigati, JS, McGeehin, JP, Muhs, DR, Bettis, EA. 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76:114128.CrossRefGoogle Scholar
Pigati, JS, Quade, J, Wilson, J, Jull, AJT, Lifton, NA. 2007. Development of low-background vacuum extraction and graphitization systems for 14C dating of old (40–60ka) samples. Quaternary International 166:414.CrossRefGoogle Scholar
Pigati, JS, Rech, JA, Nekola, JC. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519532.CrossRefGoogle Scholar
Regnell, J. 1992. Preparing pollen concentrates for AMS dating—a methodological study from a hard-water lake in southern Sweden. Boreas 21:373377.CrossRefGoogle Scholar
Rosenheim, BE, Day, MB, Domack, E, Schrum, H, Benthien, A, Hayes, JM. 2008. Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment. Geochemistry Geophysics Geosystems 9. doi:10.1029/2007GC001816.CrossRefGoogle Scholar
Scharpenseel, HW, Becker-Heidmann, P. 1992. Twenty-five years of radiocarbon dating soils: paradigm of erring and learning. Radiocarbon 34:541549.CrossRefGoogle Scholar
Scharpenseel, HW, Schiffmann, H. 1977. Soil radiocarbon analysis and soil dating. Geophysical Surveys 3:143156.CrossRefGoogle Scholar
Schulten, HR, Leinweber, P, Theng, BKG. 1996. Characterization of organic matter in an interlayer clay-organic complex from soil by pyrolysis methylation-mass spectrometry. Geoderma 69: 105118.CrossRefGoogle Scholar
Skiba, M, Szczerba, M, Skiba, S, Bish, DL, Grybos, M. 2011. The nature of interlyering in clays from a podzol (Spodosol) from the Tatra Mountains, Poland. Geoderma 160:425433.CrossRefGoogle Scholar
Slota, PJ, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of Small Samples for 14C Accelerator Targets by Catalytic Reduction of CO2. Radiocarbon 29:303306.CrossRefGoogle Scholar
Song, YG, Lai, ZP, Li, Y, Chen, T, Wang, YX. 2015. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia. Quaternary Geochronology 30:405410.CrossRefGoogle Scholar
Theng, BKG, Churchman, GJ, Newman, RH. 1986. The occurrence of interlayer clay-organic complexes in two New Zealand soils. Soil Science 142(5):262266.CrossRefGoogle Scholar
Turney, CSM, Coope, GR, Harkness, DD, Lowe, JJ, Walker, MJC. 2000. Implications for the Dating of Wisconsinan (Weichselian) Late-Glacial Events of Systematic Radiocarbon Age Differences between Terrestrial Plant Macrofossils from a Site in SW Ireland. Quaternary Research 53:114121.CrossRefGoogle Scholar
Ujvari, G, Molnar, M, Pall-Gergely, B. 2016. Charcoal and mollusc shell 14C dating of the Dunaszekcso loess record, Hungary. Quaternary Geochronology 35:4353.CrossRefGoogle Scholar
Ujvari, G, Stevens, T, Molnar, M, Demeny, A, Lambert, F, Varga, G, Jull, AJT, Pall-Gergely, B, Buylaert, JP, Kovacs, J. 2017. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proceedings of the National Academy of Science U.S.A. 114:1063210638.CrossRefGoogle ScholarPubMed
Walker, WG, Davidson, GR, Lange, T, Wren, D. 2007. Accurate lacustrine and wetland sediment accumulation rates determined from 14C activity of bulk sediment fractions. Radiocarbon 49:983992.CrossRefGoogle Scholar
Wang, H, Hackley, KC, Panno, SV, Coleman, DD, Liu, JC, Brown, J. 2003. Pyrolysis-combustion 14C dating of soil organic matter. Quatern. Res. 60:348355.CrossRefGoogle Scholar
Wang, SL, Burr, GS, Wang, PL, Lin, LH, Nguyen, V. 2016. Tracing the sources of carbon in clay minerals: an example from western Taiwan. Quaternary Geochronology 34:2432.CrossRefGoogle Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, CC, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294:23452348.CrossRefGoogle ScholarPubMed
Wang, ZL, Zhao, H, Dong, GH, Zhou, AF, Liu, JB, Zhang, DJ. 2014. Reliability of radiocarbon dating on various fractions of loess-soil sequence for Dadiwan section in the western Chinese Loess Plateau. Frontiers of Earth Science 8:540546.CrossRefGoogle Scholar
Yuan, DX, Cheng, H, Edwards, RL, Dykoski, CA, Kelly, MJ, Zhang, ML, Qing, JM, Lin, YS, Wang, YJ, Wu, JY, et al. 2004. Timing, duration, and transitions of the Last Interglacial Asian Monsoon. Science 304:575578.CrossRefGoogle ScholarPubMed
Zhou, WJ, An, ZS, Head, MJ. 1994. Stratigraphic division of Holocence loess in China. Radiocarbon 36(1):3745.CrossRefGoogle Scholar
Zhou, WJ, Donahue, D, Jull, AJT. 1997. Radiocarbon ams dating of pollen concentrated from eolian sediments: Implications for monsoon climate change since the late Quaternary. Radiocarbon 39: 1926.CrossRefGoogle Scholar
Zhou, WJ, Head, MJ, Wang, FB, Donahue, DJ, Jull, AJT. 1999. The reliability of AMS radiocarbon dating of shells from China. Radiocarbon 41:1724.CrossRefGoogle Scholar
Zhou, WJ, Zhao, XL, Lu, X, Lin, L, Wu, ZK, Peng, C, Zhao, WN, Huang, CH. 2006. The 3MV multi-element AMS in Xi’an, China: Unique features and preliminary tests. Radiocarbon 48:285293.CrossRefGoogle Scholar
Zhou, WJ, Zhou, MF, Head, MJ. 1990. 14C chronology of Bei Zhuang Cun sedimentation sequence since 30,000 years BP. Chinese Science Bulletin 35:567572.Google Scholar
Zhu, YZ, Cheng, P, Yu, SY, Yu, HG, Kang, ZH, Yang, YC, Jull, AJT, Lange, T, Zhou, WJ. 2010. Establishing a firm chronological framework for Neolithic and Early Dynastic archaeology in the Shangluo area, central China. Radiocarbon 52:466478.CrossRefGoogle Scholar