Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T03:54:01.882Z Has data issue: false hasContentIssue false

Radiocarbon Sample Preparation Procedures and the First Status Report from the Bristol Radiocarbon AMS (BRAMS) Facility

Published online by Cambridge University Press:  31 May 2019

Timothy D J Knowles*
Affiliation:
Bristol Radiocarbon Accelerator Mass Spectrometry Facility, University of Bristol, Bristol, BS8 1UU, UK
Paul S Monaghan
Affiliation:
Bristol Radiocarbon Accelerator Mass Spectrometry Facility, University of Bristol, Bristol, BS8 1UU, UK
Richard P Evershed
Affiliation:
Bristol Radiocarbon Accelerator Mass Spectrometry Facility, University of Bristol, Bristol, BS8 1UU, UK Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
*
*Corresponding author. Email: [email protected].

Abstract

The Bristol Radiocarbon Accelerator Mass Spectrometry (BRAMS) Facility was established at the University of Bristol after the commissioning of our dedicated sample preparation laboratories and the installation and acceptance of the BrisMICADAS AMS in 2016. Routine measurements commenced in mid-2016, once validation was completed for each sample type. Herein, we give an overview of the standard pretreatment methods currently employed in the Facility and the results of radiocarbon (14C) determinations on a wide range of standards, blank materials, and intercomparison samples which have been measured during our extensive pretreatment method validation program and during our routine 14C analyses.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science 17:431451.CrossRefGoogle Scholar
Boaretto, E, Bryant, C, Carmi, I, Cook, G, Gulliksen, S, Harkness, D, Heinemeier, J, McClure, J, McGee, E, Naysmith, P, Possnert, G, Scott, M, van der Plicht, H, van Strydonck, M. 2002. Summary findings of the fourth international radiocarbon intercomparison (FIRI) (1998–2001). Journal of Quaternary Science 17:633637.10.1002/jqs.702CrossRefGoogle Scholar
Brock, F, Ramsey, CB, Higham, TFG, Bronk Ramsey, C, Higham, TFG. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.10.1017/S0033822200042107CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Ramsey, CB. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1): 103112.10.1017/S0033822200045069CrossRefGoogle Scholar
Brock, F, Dee, M, Hughes, A, Snoeck, C, Staff, R, Bronk Ramsey, C. 2017. Testing the effectiveness of protocols for removal of common conservation treatments for radiocarbon dating. Radiocarbon 60(1): 3550. doi: 10.1017/RDC.2017.68.CrossRefGoogle Scholar
Casanova, E, Knowles, TDJ, Williams, C, Crump, MP, Evershed, RP. 2017. Use of a 700 MHz NMR microcryoprobe for the identification and quantification of exogenous carbon in compounds purified by preparative capillary gas chromatography for radiocarbon determinations. Analytical Chemistry 89:70907098. doi: 10.1021/acs.analchem.7b00987.CrossRefGoogle ScholarPubMed
Casanova, E, Knowles, TDJ, Williams, C, Crump, MP, Evershed, RP. 2018. Practical considerations in high-precision compound-specific radiocarbon analyses: eliminating the effects of solvent and sample cross-contamination on accuracy and precision. Analytical Chemistry 90:1102511032.10.1021/acs.analchem.8b02713CrossRefGoogle ScholarPubMed
Cook, GT, Higham, TFG, Naysmith, P, Brock, F, Freeman, SPHT, Bayliss, A. 2012. Assessment of infinite-age bones from the Upper Thames Valley, UK, as 14C background standards. Radiocarbon 54(3–4):845853.CrossRefGoogle Scholar
Friedman, GM. 1959. Identification of carbonate minerals by staining methods. SEPM Journal of Sedimentary Research 29:8797.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.10.1038/230241a0CrossRefGoogle ScholarPubMed
Němec, M, Wacker, L, Hajdas, I, Gäggeler, H. 2010. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3):13581370.10.1017/S0033822200046440CrossRefGoogle Scholar
Scott, EM, Harkness, DD, Cook, GT. 1997. Interlaboratory comparisons: lessons learned. Radiocarbon 40(1):331340.10.1017/S0033822200018208CrossRefGoogle Scholar
Scott, EM, Cook, GT, Naysmith, P, Bryant, C, O’Donnell, D. 2007. A Report on Phase 1 of the 5th International Radiocarbon Intercomparison (VIRI). Radiocarbon 49(2):409426.10.1017/S003382220004234XCrossRefGoogle Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010a. A report on Phase 2 of the Fifth International Radiocarbon Intercomparison (VIRI). Radiocarbon 52(3):846858.10.1017/S0033822200045938CrossRefGoogle Scholar
Scott, EM, Cook, GT, Naysmith, P. 2010b. The Fifth International Radiocarbon Intercomparison (VIRI): An assessment of laboratory performance in Stage 3. Radiocarbon 52(3):859865.10.1017/S003382220004594XCrossRefGoogle Scholar
Scott, EM, Naysmith, P, Cook, GT. 2017. Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5):15891596.10.1017/RDC.2017.12CrossRefGoogle Scholar
Snoeck, C, Staff, RA, Brock, F. 2016. A reassessment of the routine pretreatment protocol for radiocarbon dating cremated bones. Radiocarbon 58(1):18.10.1017/RDC.2015.1CrossRefGoogle Scholar
Synal, H-A, Stocker, M, Suter, M. 2007. MICADAS: A new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259(1):713.CrossRefGoogle Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.10.1006/jasc.1998.0385CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010a. MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52(2):252262.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, H-A. 2010b. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979.10.1016/j.nimb.2009.10.078CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010c. A revolutionary graphitisation system: Fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268:931934.CrossRefGoogle Scholar
Wacker, L, Fülöp, R-H, Hajdas, I, Molnár, M, Rethemeyer, J. 2013. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research B 294:214217.10.1016/j.nimb.2012.08.030CrossRefGoogle Scholar