Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:52:44.038Z Has data issue: false hasContentIssue false

Radiocarbon Measurements of Small-Size Foraminiferal Samples with the Mini Carbon Dating System (MICADAS) at the University of Bern: Implications for Paleoclimate Reconstructions

Published online by Cambridge University Press:  21 March 2018

Julia Gottschalk*
Affiliation:
Institute of Geological Sciences and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
Sönke Szidat
Affiliation:
Department of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Elisabeth Michel
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CNRS-CEA-UVSQ, Université de Paris-Saclay, Gif-sur-Yvette, France
Alain Mazaud
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CNRS-CEA-UVSQ, Université de Paris-Saclay, Gif-sur-Yvette, France
Gary Salazar
Affiliation:
Department of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Michael Battaglia
Affiliation:
Department of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
Jörg Lippold
Affiliation:
Institute of Geological Sciences and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
Samuel L Jaccard
Affiliation:
Institute of Geological Sciences and Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
*
*Corresponding author. Email: [email protected]

Abstract

Radiocarbon (14C) measurements of foraminifera often provide the only absolute age constraints in marine sediments. However, they are often challenging as their reliability and accuracy can be compromised by reduced availability of adequate sample material. New analytical advances using the MIni CArbon DAting System (MICADAS) allow 14C dating of very small samples, circumventing size limitations inherent to conventional 14C measurements with accelerator mass spectrometry (AMS). Here we use foraminiferal samples and carbonate standard material to assess the reproducibility and precision of MICADAS 14C analyses, quantify contamination biases, and determine foraminiferal 14C blank levels. The reproducibility of conventional 14C ages for our planktic (benthic) foraminiferal samples from gas measurements is 200 (130) yr, and has good precision as illustrated by the agreement between both standards and their reference values as well as between small gas- and larger graphitized foraminiferal samples (within 100±60 yr). We observe a constant contamination bias and slightly higher 14C blanks for foraminifera than for carbonate reference materials, limiting gas (graphite) 14C age determinations for foraminifera from our study sites to ~38 (~42) kyr. Our findings underline the significance of MICADAS gas analyses for 14C on smaller-than-conventional sized foraminiferal samples for paleoclimate reconstructions and dating.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrée, M, Oeschger, H, Broecker, WS, Beavan, N, Mix, A, Bonani, G, Hofmann, HJ, Morenzoni, E, Nessi, M, Suter, M, Wölfli, W. 1986. AMS radiocarbon dates on foraminifera from deep sea sediments. Radiocarbon 28(2A):424428. doi: 10.1017/S0033822200007542.Google Scholar
Bard, E, Tuna, T, Fagault, Y, Bonvalot, L, Wacker, L, Fahrni, S, Synal, HA. 2015. AixMICADAS the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence France. Nuclear Instruments and Methods in Physics Research B 361:8086. doi: 10.1016/j.nimb.2015.01.075.CrossRefGoogle Scholar
Barker, S, Broecker, W, Clark, E, Hajdas, I. 2007. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedidmentary bioturbated zone. Paleoceanography 22:111. doi: 10.1029/2006PA001354.Google Scholar
Berger, WH, Yasuda, MK, Bickert, T, Wefer, G. 1996. Reconstruction of atmospheric CO2 from ice-core data and the deep-sea record of Ontong Java plateau: the Milankovitch chron. Geol. Rundschau 85:466495. doi: 10.1007/BF02369003.CrossRefGoogle Scholar
Broecker, W, Barker, S, Clark, E, Hajdas, I, Bonani, G. 2006. Anomalous radiocarbon ages for foraminifera shells. Paleoceanography 21. doi: 10.1029/2005PA001212.Google Scholar
Brown, TA, Southon, JR. 1997. Corrections for contamination background in AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 123:208213. doi: 10.1016/S0168-583X(96)00676-3.Google Scholar
Delqué-Kolic, E, Comby-Zerbino, C, Ferkane, S, Moreau, C, Dumoulin, JP, Caffy, I, Souprayen, C, Quilès, A, Bavay, D, Hain, S, Setti, V. 2013. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay France. Nuclear Instruments and Methods in Physics Research B 294:189193. doi: 10.1016/j.nimb.2012.08.048.Google Scholar
Ezat, MM, Rasmussen, TL, Thornalley, DJR, Olsen, J, Skinner, LC, Hönisch, B, Groeneveld, J. 2017. Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates. Paleoceanography. 172181. doi: 10.1002/2016PA003053.Google Scholar
Fahrni, SM, Wacker, L, Synal, HA, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:320327. doi: 10.1016/j.nimb.2012.03.037.Google Scholar
Freeman, E, Skinner, LC, Reimer, R, Scrivner, A, Fallon, S. 2016. Graphitization of small carbonate samples for palaeoceanographic research at the Godwin Radiocarbon Laboratory University of Cambridge. Radiocarbon 58(1). doi: 10.1017/rdc.2015.8.CrossRefGoogle Scholar
Gottschalk, J, Skinner, LC, Lippold, J, Vogel, H, Frank, N, Jaccard, SL, Waelbroeck, C. 2016. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes. Nat. Commun. 7 doi: 10.1038/ncomms11539.Google Scholar
Hua, Q, Zoppi, U, Williams, AA, Smith, AM. 2004. Small-mass AMS radiocarbon analysis at ANTARES. Nuclear Instruments and Methods in Physics Research B 223–4:284292. doi: 10.1016/j.nimb.2004.04.057.Google Scholar
Jenk, TM, Szidat, S, Schwikowski, M, Gäggeler, HW, Wacker, L, Synal, HA, Saurer, M. 2007. Microgram level radiocarbon (14C) determination on carbonaceous particles in ice. Nuclear Instruments and Methods in Physics Research B 259:518525. doi: 10.1016/j.nimb.2007.01.196.Google Scholar
Lindsay, CM, Lehman, SJ, Marchitto, TM, Ortiz, JD. 2015. The surface expression of radiocarbon anomalies near Baja California during deglaciation. Earth Planetary Science Letters 422:6774. doi: 10.1016/j.epsl.2015.04.012.CrossRefGoogle Scholar
Magana, AL, Southon, JR, Kennett, JP, Roark, EB, Sarnthein, M, Stott, LD. 2010. Resolving the cause of large differences between deglacial benthic foraminifera radiocarbon measurements in Santa Barbara Basin. Paleoceanography 25:18. doi: 10.1029/2010PA002011.Google Scholar
Mazaud, A, Kissel, C, Laj, C, Sicre, MA, Michel, E, Turon, JL. 2007. Variations of the ACC-CDW during MIS3 traced by magnetic grain deposition in midlatitude South Indian Ocean cores: connections with the Northern Hemisphere and with central Antarctica. Geochemistry Geophys . Geosystems. 8 doi: 10.1029/2006GC001532.Google Scholar
Moreau, C, Caffy, I, Comby, C, Delqué-Kolic, E, Dumoulin, JP, Hain, S, Quilès, A, Setti, V, Souprayen, C, Thellier, B, Vincent, J. 2013. Research and development of the ARTEMIS 14C AMS facility: status report. Radiocarbon 55(2):331337. doi: 10.2458/azu_js_rc.55.16293.CrossRefGoogle Scholar
Nadeau, M-J, Grootes, PM, Voelker, A, Bruhn, F, Duhr, A, Oriwall, A. 2001. Carbonate 14C background: does it have multiple personalities? Radiocarbon 43(2A):169176. doi: 10.1017/S0033822200037978.Google Scholar
Pearson, A, McNichol, AP, Schneider, RJ, von Reden, KF, Zheng, Y. 1998. Microscale 14C AMS measurement at NOSAMS. Radicarbon 40(1):6175. doi: 10.1017/S0033822200017902.Google Scholar
Reimer, PJ, Brown, TA, Reimer, RW. 2004. Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46(3):12991304. doi: 10.1017/S0033822200033154.Google Scholar
Roach, LD, Charles, CD, Field, DB, Guilderson, TP. 2013. Foraminiferal radiocarbon record of northeast Pacific decadal subsurface variability. J. Geophys. Res. Ocean 118:43174333. doi: 10.1002/jgrc.20274.Google Scholar
Rozanski, K. 1991. Consultants’ group meeting on 14C reference materials for radiocarbon laboratories. Internal Report, IAEA, Vienna, Austria.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506519. doi: 10.1017/S0033822200063761.Google Scholar
Ruff, M, Szidat, S, Gäggeler, HW, Suter, M, Synal, H, Wacker, L. 2010a. Gaseous radiocarbon measurements of small samples. Nuclear Instruments and Methods in Physics Research B 268:790794. doi: 10.1016/j.nimb.2009.10.032.Google Scholar
Ruff, M, Fahrni, S, Gäggeler, H, Hajdas, I, Suter, M, Synal, H-A, Szidat, S, Wacker, L. 2010b. On-line radiocarbon measurements of small samples using elemental analyzer and MICADAS gas ion source. Radiocarbon 52(4):16451656. doi: 10.1017/S003382220005637X.Google Scholar
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307314. doi: 10.1017/S0033822200042235.Google Scholar
Salazar, G, Zhang, YL, Agrios, K, Szidat, S. 2015. Development of a method for fast and automatic radiocarbon measurement of aerosol samples by online coupling of an elemental analyzer with a MICADAS AMS. Nuclear Instruments and Methods in Physics Research B 361:163167. doi: 10.1016/j.nimb.2015.03.051.Google Scholar
Santos, GM, Southon, JR, Griffin, S, Beaupre, SR, Druffel, ERM. 2007a. Ultra small-mass AMS 14C sample preparation and analyses at KCCAMS/UCI facility. Nuclear Instruments and Methods in Physics Research B 259:293302. doi: 10.1016/j.nimb.2007.01.172.Google Scholar
Santos, GM, Southon, JR, Drenzek, NJ, Ziolkowski, LA, Druffel, E, Xu, X, Zhang, D, Trumbore, S, Eglinton, TI, Hughen, KA. 2007b. Blank assessment for ultra-small radiocarbon samples: chemical extraction and separation versus AMS. Radiocarbon 52:13221335. doi: 10.2458/azu_js_rc.52.3631.Google Scholar
Schleicher, M, Grootes, PM, Nadeau, M-J, Schoon, A. 1998. The carbonate 14C background and its components at the Leibniz AMS facility. Radiocarbon 40(1):8593. doi: 10.1017/S0033822200017926.Google Scholar
Schulze-König, T, Seiler, M, Suter, M, Wacker, L, Synal, HA. 2011. The dissociation of 13CH and 12CH2 molecules in He and N2 at beam energies of 80-250 keV and possible implications for radiocarbon mass spectrometry. Nuclear Instruments and Methods in Physics Research B 269:3439. doi: 10.1016/j.nimb.2010.09.015.Google Scholar
Shah Walter, SR, Gagnon, AR, Roberts, ML, McNichol, AP, Lardie Gaylord, MC, Klein, E. 2015. Ultra-small graphitization reactors for ultra-microscale 14C analysis of the National Ocean Sciences Accelerator Mass Spectrometry (NOSAMS) facility. Radiocarbon 57(1):109122. doi: 10.2458/azu_rc.57.18118.Google Scholar
Smith, AM, Yang, B, Hua, Q, Mann, M. 2010. Laser-heated microfurnace: gas analysis and graphite morphology. Radiocarbon 52(2):769782. doi: 10.1017/S0033822200045781.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363. doi: 10.1017/S0033822200003672.Google Scholar
Suter, M, Jacob, S, Synal, H-A. 1997. AMS of 14C at low energies. Nuclear Instruments and Methods in Physics Research 123:148152. doi: 10.1016/S0168-583X(96)00613-1.Google Scholar
Synal, HA. 2013. Developments in accelerator mass spectrometry. Int. J. Mass Spectrom 349–50:192202. doi: 10.1016/j.ijms.2013.05.008.CrossRefGoogle Scholar
Synal, HA, Jacob, S, Suter, M. 2000. New concepts for radiocarbon detection systems. Nuclear Instruments and Methods in Physics Research B 161:2936. doi: 10.1016/S0168-583X(99)00881-2.Google Scholar
Synal, H, Stocker, M, Suter, M. 2007. MICADAS: a new compact radiocarbon AMS system. Nuclear Instruments and Methods in Physics Research B 259:713. doi: 10.1016/j.nimb.2007.01.138.Google Scholar
Szidat, S, Salazar, GA, Vogel, E, Battaglia, M, Wacker, L, Synal, HA, Türler, A. 2014. 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56(2):561566. doi: 10.2458/56.17457.Google Scholar
Szidat, S, Vogel, E, Gubler, R, Lösch, S. 2017. Radiocarbon dating of bones at the LARA laboratory in Bern Switzerland. Radiocarbon 59(3):831842. doi: 10.1017/RDC.2016.90.Google Scholar
Vogel, JS, Nelson, DE, Southon, JR. 1987. 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29(3):323333. doi: 10.1017/S0033822200043733.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research 5:289293. doi: 10.1016/0168-583X(84)90529-9.Google Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Nemec, M, Ruff, M, Suter, M, Synal, H, Vockenhuber, C. 2010a. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52(2):252262. doi: 10.2458/azu_js_rc.52.3660.CrossRefGoogle Scholar
Wacker, L, Christl, M, Synal, HA. 2010b. Bats: A new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268:976979. doi: 10.1016/j.nimb.2009.10.078.Google Scholar
Wacker, L, Fahrni, SM, Hajdas, I, Molnar, M, Synal, HA, Szidat, S, Zhang, YL. 2013a. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:315319. doi: 10.1016/j.nimb.2012.02.009.Google Scholar
Wacker, L, Fülöp, RH, Hajdas, I, Molnár, M, Rethemeyer, J. 2013b. A novel approach to process carbonate samples for radiocarbon measurements with helium carrier gas. Nuclear Instruments and Methods in Physics Research B 294:214217. doi: 10.1016/j.nimb.2012.08.030.Google Scholar
Wacker, L, Lippold, J, Molnár, M, Schulz, H. 2013c. Towards radiocarbon dating of single foraminifera with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:307310. doi: 10.1016/j.nimb.2012.08.038.Google Scholar
Wacker, L, Nemec, M, Bourquin, J. 2010c. A revolutionary graphitisation system: fully automated compact and simple. Nuclear Instruments and Methods in Physics Research B 268:931934. doi: 10.1016/j.nimb.2009.10.067.Google Scholar
Wycech, J, Kelly, DC, Marcott, S. 2016. Effects of seafloor diagenesis on planktic foraminiferal radiocarbon ages. Geology 44:14. doi: 10.1130/G37864.1.Google Scholar