Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T04:13:46.121Z Has data issue: false hasContentIssue false

Radiocarbon Dating to a Single Year by Means of Rapid Atmospheric 14C Changes

Published online by Cambridge University Press:  09 February 2016

L Wacker*
Affiliation:
Laboratory for Ion Beam Physics, ETH Zurich, Switzerland
D Güttler
Affiliation:
Laboratory for Ion Beam Physics, ETH Zurich, Switzerland
J Goll
Affiliation:
Archäologischer Dienst Graubünden, Müstair, Switzerland
J P Hurni
Affiliation:
Laboratoire Romand de Dendrochronologie, LRD Moudon, Switzerland
H-A Synal
Affiliation:
Laboratory for Ion Beam Physics, ETH Zurich, Switzerland
N Walti
Affiliation:
Laboratory for Ion Beam Physics, ETH Zurich, Switzerland
*
2. Corresponding author: Email: [email protected].

Abstract

In the best case, radiocarbon measurements allow artificial objects to be dated with a precision of 10 calendar years when conventional wiggle-matching onto the IntCal09 calibration curve is applied. More precise dating can only be achieved by using annually resolved 14C calibration data, particularly in timespans when there are rapid changes in atmospheric 14C concentration. The recently observed jump in atmospheric 14C concentration of 1.5% between AD 774 and 775, though expected to be rare, is a good example for such a rapid change. We demonstrate by example that is possible to precisely 14C date the cutting year of a timber in the historically important and well-preserved Holy Cross chapel of the convent St. John the Baptist in Val Müstair, Switzerland.

Type
Methodology: Generaland Bones
Copyright
Copyright © 2014 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. ‘Wiggle matching’ radiocarbon dates. Radiocarbon 43(2A):381–9.CrossRefGoogle Scholar
Goll, J. 2010. Müstair, Monastero di San Giovanni: la Cappella della Santa Croce. In: Pace V. L' VIII secolo: un secolo inquieto; atti del convegno internazionale di studi. Cividale del Friuli, 4–7 dicembre 2008. London: BPR Publishers. p 259–60.Google Scholar
Goll, J. 2013. Müstair, Architektur im Dienst von Glaube und Herrschaft. In: Riek, M, Goll, J, Descoeudres, G, editors. Die Zeit Karls des Grossen in der Schweiz. Sulgen: Benteli. p 5765.Google Scholar
Güttler, D, Wacker, L, Kromer, B, Friedrich, M, Synal, H-A. 2013. Evidence of 11-year solar cycles in tree rings from 1010 to 1110 AD – progress on high precision AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:459–63.Google Scholar
Hollstein, E. 1980. Mitteleuropäische Eichenchronologie: Trierer dendrochronologische Forschungen zur Archäologie und Kunstgeschichte. Darmstadt: von Zabern.Google Scholar
Hurni, JP, Orcel, C, Tercier, J. 2007. Zu den dendrochronologischen Untersuchungen von Hölzern aus St. Johann in Müstair. (Hg.) In: Sennhauser, HR, editor. Müstair, Kloster St. Johann. ETH Zurich. p 99116.Google Scholar
Miyake, F, Nagaya, K, Masuda, K, Nakamura, T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402):240–2.Google Scholar
Miyake, F, Masuda, K, Nakamura, T. 2013. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748.CrossRefGoogle ScholarPubMed
Němec, N, Wacker, L, Hajdas, I, Gäggeler, H. 2010a. Alternative methods for cellulose preparation for AMS measurement. Radiocarbon 52(3):1358–70.Google Scholar
Němec, N, Wacker, L, Gäggeler, H. 2010b. Optimization of the graphitization process at AGE-1. Radiocarbon 52(3):1380–93.Google Scholar
Oswald, F, Shaefer, L, Sennhauser, HR, Jacobsen, W, München, ZfKi. 1990. Vorromanische Kirchenbauten: Katalog der Denkmäler bis zum Ausgang der Ottonen. Munich: Prestel-Verlag.Google Scholar
Pace, V. 2010. L' VIII secolo: un secolo inquieto; atti del convegno internazionale di studi. Cividale del Friuli, 4–7 dicembre 2008. London: BPR Publishers.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Usoskin, IG, Kromer, B, Ludlow, F, Beer, J, Friedrich, M, Kovaltsov, GA, Solanki, SK, Wacker, L. 2013. The AD775 cosmic event revisited: the Sun is to blame. Astronomy & Astrophysics 552: L3.Google Scholar
Wacker, L, Christl, M, Synal, H-A. 2010a. Bats: a new tool for AMS data reduction. Nuclear Instruments and Methods in Physics Research B 268(7–8):976–9.CrossRefGoogle Scholar
Wacker, L, Bonani, G, Friedrich, M, Hajdas, I, Kromer, B, Němec, M, Ruff, M, Suter, M, Synal, H-A, Vockenhuber, C. 2010b. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52(2):252–62.CrossRefGoogle Scholar
Wacker, L, Němec, M, Bourquin, J. 2010c. A revolutionary graphitisation system: fully automated, compact and simple. Nuclear Instruments and Methods in Physics Research B 268(7–8):931–4.Google Scholar