Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T20:59:12.027Z Has data issue: false hasContentIssue false

RADIOCARBON DATING OF URBAN SECONDARY CARBONATE DEPOSITS: SITE EFFECT AND IMPLICATION FOR CHRONOLOGY: CASE STUDY OF PARIS AND VERSAILLES PALACE FOUNTAINS

Published online by Cambridge University Press:  06 December 2022

Edwige Pons-Branchu*
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France
Ingrid Caffy
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
Emmanuelle Delque-Kolic
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
Jean-Pascal Dumoulin
Affiliation:
Laboratoire de Mesure du Carbone 14 (LMC14), LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
Emmanuel Dumont
Affiliation:
CEREMA : TEAM - 12 Rue Teisserenc de Bort, 78197 TRAPPES-en-Yvelines Cedex ; and Rue de l’Egalité Prolongée – BP 134, 93352, Le Bourget Cedex 319, France
Sarah Madikita
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France
Gilles Bultez
Affiliation:
Château de Versailles : Etablissement Public du château, du musée et du domaine national de Versailles. RP 834 – 78008, Versailles Cedex, France
Daniella Malnar
Affiliation:
Château de Versailles : Etablissement Public du château, du musée et du domaine national de Versailles. RP 834 – 78008, Versailles Cedex, France
Gael Monvoisin
Affiliation:
Laboratoire GEOPS, Université. Paris Saclay – UMR 8148 CNRS – Université Paris Saclay, 91405, Orsay Cedex, France
Jules Querleux
Affiliation:
IGC, Inspection générale des Carrières – 86 rue Regnault, 75013, France
Matthieu Fernandez
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France Laboratoire histoire des technosciences en société, EA3716, Conservatoire national des arts et métiers, 2 rue Conté 75003, Paris, France
Nadine Tisnérat Laborde
Affiliation:
Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris Saclay, Gif-sur-Yvette, France
Philippe Branchu
Affiliation:
CEREMA : TEAM - 12 Rue Teisserenc de Bort, 78197 TRAPPES-en-Yvelines Cedex ; and Rue de l’Egalité Prolongée – BP 134, 93352, Le Bourget Cedex 319, France
*
*Corresponding author. Email: [email protected]

Abstract

In urban environments, diachronic evolution of water quality can be reconstructed using geochemical analysis of urban secondary carbonate deposits (USCDs), from urban underground structures, similar to speleothems from natural caves. The use of the radiocarbon bomb peak to build their precise chronology was recently tested in two Paris-area urban sites (France). In this study, new samples from contrasted environments in the Paris region were sampled in order to test the sites’ effects on the radiocarbon signal recorded: under wood, under a fountain, in underground aqueducts, in the south and north of Paris. We compared the post-bomb atmospheric radiocarbon record with the one measured at the top of USCDs, and estimated the dead carbon proportion (DCP), between 0 and 40%. USCDs fed by water with a rapid transfer through thin soil (Versailles fountain) had the lowest DCP (14C very close to atmospheric one). Highest DCP were found for USCD from deep underground quarry under urban wood, and intermediate ones for USCDs fed by the waters of perched aquifers. These data support the use of radiocarbon as chronometer for USCDs in contrasted urban contexts, and show that it can be used to determine carbon transport and sources, an important parameter for pollution reconstruction.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Awsiuk, R, Pazdur, MF. 1986. Regional Suess effect in the Upper Silesia urban area. Radiocarbon 28(2A):655660.CrossRefGoogle Scholar
Baker, A, Smart, PL, Edwards, RL, Richards, DA. 1993. Annual growth banding in a cave stalagmite. Nature 364(6437):518520 CrossRefGoogle Scholar
Carlson, PE, Banner, JL, Johnson, KR, Casteel, RC, Breecker, DO. 2019. Carbon cycling of subsurface organic matter recorded in speleothem 14C records: maximizing bomb-peak model fidelity. Geochimica et Cosmochimica Acta 246:436449.CrossRefGoogle Scholar
Dumoulin, JP, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Caffy, I, Hain, S, Perron, M, Thellier, B, Setti, V, Berthier, B, Beck, L. 2017. Status report on sample preparation protocols developed at the LMC14 Laboratory, Saclay, France: from sample collection to 14C AMS measurement. Radiocarbon 59(3):713726.CrossRefGoogle Scholar
Franck-Néel, C, Borst, W, Diome, C, Branchu, P. 2015. Mapping the land use history for protection of soils in urban planning: what reliable scales in time and space? J. Soils Sediments 15:16871704.CrossRefGoogle Scholar
Genty, D, Baker, A, Massault, M, Proctor, C, Pons-Branchu, E, Hamelin, B. 2001. Dead carbon in stalagmites: carbonates bedrocks vs ageing of soil organic matter. Implications for 13C variations in speleothems. Geochimica et Cosmochimica Acta 65(20):34433457.CrossRefGoogle Scholar
Goslar, T, Hercman, H, Pazdur, A, 2000. Comparison of U-series and radiocarbon dates of speleothems. Radiocarbon 42(3):403414.CrossRefGoogle Scholar
Hendy, CH. 1971. The isotopic geochemistry of speleothems—I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochemica et Cosmochimica Acta 35(8):801824.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072.CrossRefGoogle Scholar
Macario, KD, Stríkis, NM, Cruz, FW, Hammerschlag, I, Alves, EQ, Novello, VF, Edwards, L, Cheng, H, Andrade, FRD, Buarquec, PFSM, Garbelim, JAS. 2019. Assessing the dead carbon proportion of a modern speleothem from central Brazil. Quaternary Geochronology 52:2936.CrossRefGoogle Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227239.CrossRefGoogle Scholar
Moreau, C, Messager, C, Berthier, B, Hain, S, Thellier, B, Dumoulin, JP, Caffy, I, Sieudat, M, Beck, L, 2020. ARTEMIS, the 14C AMS facility of the LMC14 National Laboratory: a status report on quality control and microsample procedures. Radiocarbon 62:17551770.CrossRefGoogle Scholar
Noronha, AL, Johnson, KR, Hu, C, Ruan, J, Southon, JR, Ferguson, JE. 2014. Assessing influences on speleothem dead carbon variability over the Holocene: implications for speleothem-based radiocarbon calibration. Earth and Planetary Science Letters 394:2029.CrossRefGoogle Scholar
Noronha, AL, Johnson, KR, Southon, JR, Hu, C, Ruan, J, McCabe-Glynn, S. 2015. Radiocarbon evidence for decomposition of aged organic matter in the vadose zone as the main source of speleothem carbon. Quaternary Science Reviews 127:3747.CrossRefGoogle Scholar
Pons-Branchu, E, Bergonzini, L, Tisnérat-Laborde, N, Branchu, P, Dumont, E, Massault, M, Bultez, G, Malnar, D, Kaltnecker, E, Dumoulin, JP, Noret, A, Pelletier, N, Roy-Barman, M. 2018. 14C in urban speleothem-like deposits: a new tool for environmental study. Radiocarbon 60(4):12691281.CrossRefGoogle Scholar
Pons-Branchu, E, Ayrault, S, Roy-Barman, M, Bordier, L, Borst, W, Branchu, P, Douville, E, Dumont, E. 2015. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems. Science of the Total Environment 15:8696.CrossRefGoogle Scholar
Pons-Branchu, E, Douville, E, Roy-Barman, M, Dumont, E, Branchu, E, Thil, F, Frank, N, Bordier, L, Borst, W. 2014. A geochemical perspective on Parisian urban history based on U-Th dating, laminae counting and yttrium and REE concentrations of recent carbonates in underground aqueducts. Quaternary Geochronology 24:4453.CrossRefGoogle Scholar
Pons-Branchu, E, Roy-Barman, M, Jean-Soro, L, Guillerme, A, Branchu, P, Fernandez, M, Dumont, E, Douville, E, Michelot, JL, Phillips, MA. 2017. Urbanization impact on sulfur content of groundwater revealed by the study of urban speleothems: case study in Paris, France. Science of the Total Environment 579:124132.CrossRefGoogle Scholar
Quiers, M, Perrette, Y, Chalmin, E, Fanget, B, Poulenard, J. 2015. Geochemical mapping of organic carbon in stalagmites using liquid-phase and solid-phase fluorescence. Chemical Geology 411:240247.CrossRefGoogle Scholar
Rudzka-Phillips, D, McDermott, F, Jackson, A, Fleitmann, D. 2013. Inverse modelling of the 14C bomb pulse in stalagmites to constrain the dynamics of soil carbon cycling at selected European cave sites. Geochemica et Cosmochimica Acta 112:3251.CrossRefGoogle Scholar
Shopov, YY, Ford, DC, Schwarz, HP. 1994. Luminescent microbanding in speleothems—high-resolution chronology and paleoclimate. Geology 22:407410.2.3.CO;2>CrossRefGoogle Scholar
Svetlik, I, Povinec, PP, Molnár, M, Vána, M, Šivo, A, Bujtás, T. 2010. Radiocarbon in the air of central Europe: Long-term investigations. Radiocarbon 52(2):823834.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Poupeau, JJ, Tannau, JF, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate samples. Radiocarbon 43(2A):299304.CrossRefGoogle Scholar
Virág, M, Molnár, M, Braun, M, Mindszenty, A. 2020. Investigation of a flowstone-like historical indoor-travertine (Rudas Spa, Budapest, Hungary) using the 14C “bomb-peak”. Radiocarbon 62(5):14191435.CrossRefGoogle Scholar