Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T01:34:40.515Z Has data issue: false hasContentIssue false

Radiocarbon Dating of Mortars with a Pozzolana Aggregate Using the Cryo2SoniC Protocol to Isolate the Binder

Published online by Cambridge University Press:  05 December 2017

Sara Nonni*
Affiliation:
Department of Earth Sciences, Sapienza University of Rome, 00185Rome, Italy CIRCE (Centre for Isotopic Research on Cultural and Environmental Heritage) – INNOVA, 81020San Nicola La Strada, Caserta, Italy
Fabio Marzaioli
Affiliation:
CIRCE (Centre for Isotopic Research on Cultural and Environmental Heritage) – INNOVA, 81020San Nicola La Strada, Caserta, Italy Department of Mathematics and Physics, Second University of Naples, 81100Caserta, Italy
Silvano Mignardi
Affiliation:
Department of Earth Sciences, Sapienza University of Rome, 00185Rome, Italy
Isabella Passariello
Affiliation:
CIRCE (Centre for Isotopic Research on Cultural and Environmental Heritage) – INNOVA, 81020San Nicola La Strada, Caserta, Italy Department of Mathematics and Physics, Second University of Naples, 81100Caserta, Italy
Manuela Capano
Affiliation:
CIRCE – Second University of Naples; present address: Aix Marseille Univ, CNRS, IRD, Coll France, CEREGE, Aix-en-Provence, France
Filippo Terrasi
Affiliation:
CIRCE (Centre for Isotopic Research on Cultural and Environmental Heritage) – INNOVA, 81020San Nicola La Strada, Caserta, Italy Department of Mathematics and Physics, Second University of Naples, 81100Caserta, Italy
*
*Corresponding author. Email: [email protected]

Abstract

To date, finding a technique able to effectively isolate the carbon signal from the binder of a mortar is still an open challenge. In this paper, the radiocarbon (14C) dating of one of the most challenging and diffuse types of mortar, the one with pozzolana aggregate, is investigated. Eight mortar samples from three archaeological sites near Rome (Italy) underwent a selection process called Cryo2SoniC. The selected fractions were analyzed by the accelerator mass spectrometry (AMS) 14C technique and compared to known historical references. Additional scanning electron microscopy analysis and petrographic investigations were done, respectively, to check the grain size of the fractions selected by Cryo2SoniC, and further, to characterize the original mortar samples. The masses of carbon yielded from the dated fractions were almost half of those released from some aerial mortars. The 14C dating results were accurate for pozzolana mortars, from buried and unburied structures, with calcination relics and small contamination of secondary calcite. A limitation in the purification protocol was observed on samples with a massive contamination of secondary calcite deposition of ground water origin, occluding porosity and substituting up to the 80% of the original binder matrix.

Type
Research Article
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Bashaireh, K. 2013. Plaster and mortar radiocarbon dating of Nabatean and Islamic structure, South Jordan. Archaeometry 55(2):329354.Google Scholar
Ambers, J. 1987. Stable carbon isotope ratios and their relevance to the determination of accurate radiocarbon dates for lime mortars. Journal of Archaeological Sciences 14(6):569576.Google Scholar
Bakolas, A, Biscontin, G, Moropoulou, A, Zendri, E. 1998. Characterization of structural byzantine mortars by thermogravimetric analysis. Thermochimica Acta 321:151160.CrossRefGoogle Scholar
Barbera, M, Di Pasquale, S, Palazzo, P. 2007. Roma, studi e indagini sul cd. Tempio di Minerva Medica. FOLD&R Fasti On Line Documents & Research 91:121.Google Scholar
Baxter, MS, Walton, A. 1970. Radiocarbon dating of mortars. Nature 225(5236):937938.CrossRefGoogle ScholarPubMed
Bertolini, T, Rubino, M, Lubritto, C, D’Onofrio, A, Marzaioli, F, Passariello, I, Terrasi, F. 2005. Optimized sample preparation for isotopic analyses of CO2 in air: a systematic study of precision and accuracy dependence on driving variables during CO2 purification process. Journal of Mass Spectrometry 40(8):11041108.CrossRefGoogle Scholar
Biasci, A. 2000. Il padiglione del “Tempio di Minerva Medica” a Roma: struttura, tecniche di costruzione e particolari inediti. Science and Technology for Cultural Heritage 9(1-2):6768.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2-3):720730.CrossRefGoogle Scholar
Callebaut, K, Elsen, J, Van Balen, K, Viaene, W. 2001. Nineteenth-century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium). Natural Hydraulic lime or cement. Cement and Concrete Research 31:397403.Google Scholar
Cazalla, O, Rodriguez-Navarro, G, Sebastian, E, Cultrone, G, De la Torre, MJ. 2000. Aging of lime putty: effects on traditional lime mortar carbonation. Journal of the American Ceramic Society 83:10701076.Google Scholar
David, M, Pellegrin, A, Turci, M. 2009. Ostia (Roma). Ocnus 17:198202.Google Scholar
David, M, Turci, M. 2011. Nuove osservazioni da recentiindaginiostiensi, Atti del XVI Colloquiodell’Associazione italiana per lo studio e la conservazione del mosaico (Palermo, March 2010) . Testacea Spicata Tuburtina, Tivoli. 267275.Google Scholar
David, M, Gonzales, X. 2011. Opus doliare e nuovi bolli laterizidall’insula IV, IX di Ostia, Actes du Congres de la Societe Francaise d’Etude de la Ceramique Antique and Gaule (SFECAG), (Arles June 2011) . Marsiglia 2011:389396.Google Scholar
David, M, Carinci, M, Graziano, SM, De Togni, S, Pellegrino, A, Turci, M. 2014. Nuovi dati e argomenti per Ostia tardo-antica dal Progetto Ostia Marina. OstiaAntica – Varia. Melanges de L’Ecole francaise de Rome – Antiquite. 122.Google Scholar
Davis, JA, Kent, DB. 1990. Surface complexation modeling in aqueous geochemistry. Mineral-Water Interface Geochemistry. Rev. Mineral. 23:177260.Google Scholar
Delibrias, G, Labeyrie, J. 1964. Dating of old mortars by the carbon-14 method. Nature 201(4920):742.Google Scholar
De Rossi, GM. 1981. Torri medioevali della campagna Romana. Rome: Newton Compton. p 331334.Google Scholar
El-Turki, A, Ball, RJ, Allen, GC. 2007. The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime. Cement and Concrete Research 37(8):12331240.Google Scholar
Esposito, D. 1998. Tecniche costruttive murarie medievali: murature “a tufelli” in area romana . L’Erma di Bretschneider: 3637.Google Scholar
Femy, C, Brough, AR, Taylor, HFW. 2003. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions. Cement and Concrete Research 33(9):13891398.Google Scholar
Folk, RL, Valastro, S Jr. 1976. Successful technique for dating of lime mortar by carbon-14. Journal of Field Archaeology 3(2):203208.Google Scholar
Gal, A, Habraken, W, Gur, D, Fratzl, P, Weiner, S, Addali, L. 2013. Calcite crystal growth by a solid-state transformation of stabilized: amorphous calcium carbonate nanospheres in a hydrogel. Angewandte Chemie 52:486748-70.Google Scholar
Genestar, C, Pons, C. 2003. Ancient covering plaster mortars from several convents and Islamic and Gothic palaces in Palma de Mallorca (Spain): analytical characterisation. Journal of Cultural Heritage 4(4):291298.CrossRefGoogle Scholar
Goslar, T, Nawrocka, D, Czernik, J. 2009. Foraminiferous limestone in 14C dating of mortar. Radiocarbon 51(2):857866.CrossRefGoogle Scholar
Hajdas, I, Trumm, J, Bonanni, G, Biechele, C, Maurer, M, Wacker, L. 2012. Roman ruins as an experiment for radiocarbon dating of mortar. Radiocarbon 54(3–4):897903.Google Scholar
Hale, J, Heinemeier, J, Lancaster, L, Lindroos, A, Ringbom, Å. 2003. Dating ancient mortar. American Scientist 91(2):130137.Google Scholar
Heinemeier, J, Jungner, H, Lindroos, A, Ringbom, Å, Von Konow, T, Rud, N. 1997. AMS 14C dating of lime mortar. Nuclear Instruments and Methods in Physics Research B 123(1–4):487495.Google Scholar
Heinemeier, J, Ringbom, A, Lindroos, A, Sveinbjornsdottir, AE. 2010. Successful AMS 14C dating of non-hydraulic lime mortars from the medieval churches of the Aland Islands, Finland. Radiocarbon 52(1):171204.Google Scholar
Hodgins, G, Lindroos, A, Ringbom, A, Heinemeier, J, Brock, F. 2011. 14C dating of Roman mortars—preliminary tests using diluted hydrochloric acid injected in batches. Commentationes Humanarum Letterarum 128:209213.Google Scholar
Idorn, GM, Thaulow, N. 1983. Examination of 136 years old Portland cement concrete. Cement and Concrete Research 13(5):739743.Google Scholar
Jackson, M, Marra, F. 2006. Roman stone masonry: volcanic foundations of the ancient city. American Journal of Archaeology 110:403436.Google Scholar
Kosednar-Legenstein, B, Dietzel, M, Leis, A, Stingl, K. 2008. Stable carbon and oxygen isotope investigation in historical lime mortar and plaster—results from field and experimental study. Applied Geochemistry 23(8):24252437.CrossRefGoogle Scholar
Lanas, J, Bernal, JLP, Bello, MA, Galindo, JIA. 2004. Mechanical properties of natural hydraulic lime-based mortars. Cement and Concrete Research 34(12):21912201.CrossRefGoogle Scholar
Lawrence, P, Cyr, M, Ringot, E. 2003. Mineral admixtures in mortars: effect of inert materials on short-term hydration. Cement and Concrete Research 33(12):19391947.Google Scholar
Lindroos, A. 2005. Carbonate phase in historical lime mortars and pozzolana concrete: implication for 14 C dating. Department of Geology and Mineralogy, Abo Akademi University. PaintaloGillot.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, Å, Braskén, M, Sveinbjörnsdóttir, Á. 2007. Mortar dating using AMS 14C and sequential dissolution: examples from Medieval, non-hydraulic lime mortars from the Åland Islands, SW Finland. Radiocarbon 49(1):4767.Google Scholar
Lindroos, A, Heinemeier, J, Ringbom, A, Brock, F, Sonck-Koote, P, Pehkonen, M, Suksi, J. 2011. Problems in radiocarbon dating of Roman pozzolana mortars. Building Roma Aeterna, Proceeding of the Conference March 2008. CommentationesHumanarumLetterarum 128: 214-230.Google Scholar
Lubritto, C, Caroselli, M, Lugli, S, Marzaioli, F, Nonni, S, Marchetti Dori, S, Terrasi, F. 2015. AMS radiocarbon dating of mortar. The case study of the medieval UNESCO site of Modena. Nuclear Instrument and Methods in Physics Research B 361:614619.Google Scholar
Marzaioli, F. 2011. Characterization of a new protocol fro mortar dating: 13C and 14C evidences. Il Nuovo Cimento, Societa Italiana di Fisica 5:217226.Google Scholar
Marzaioli, F, Borriello, G, Passariello, I, Lubritto, C, De Cesare, N, D’Onofrio, A, Terrasi, F. 2008. Zinc reduction as an alternative method for AMS radiocarbon dating: process optimization at CIRCE. Radiocarbon 50(1):139149.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: preliminary accuracy evaluation of a novel methodology. Analytical Chemistry 83(6):20382045.Google Scholar
Marzaioli, F, Nonni, S, Passariello, I, Capano, M, Ricci, P, Lubritto, C, De Cesare, N, Eramo, G, Castillo, JAQ, Terrasi, F. 2013. Accelerator mass spectrometry 14C dating of lime mortars: methodological aspects and field study applications at CIRCE (Italy). Nuclear Instruments and Methods in Physics Research B 294:246251.Google Scholar
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Ottaviano, L, Terrasi, F. 2014. Characterisation of a new protocol for mortar dating: 14C evidences. Open Journal of Archaeometry 2:5264.Google Scholar
Massazza, F. 1993. Pozzolanic cements. Cements and Concrete Composites 15(4):185214.Google Scholar
Mathews, JP. 2001. Radiocarbon dating of architectural mortar: a case study in the Maya region, Quintana Roo, Mexico. Journal of Field Archaeology 28(3–4):395400.CrossRefGoogle Scholar
McCrea, JMJ. 1950. Isotopic chemistry of carbonates and a paleo-temperature scale. Journal of Chemical Physics 18:849857.Google Scholar
Michalska, D, Pazdur, A, Czernik, J, Szczepaniak, M, Zurakowska, M. 2013. Cretaceous aggregate and reservoir effect in dating the binding materials. Geochronometria 40(1):3341.Google Scholar
Michalska, D, Czernik, J. 2015. Carbonates in leaching reactions in context of 14C dating. Nuclear Instruments and Methods in Physics Research B 361:431439.Google Scholar
Miriello, D, Barca, D, Bloise, A, Ciarallo, A, Crisci, GM, De Rose, T, Gattuso, C, Gazineo, F, La Russa, M. 2010. Characterisation of archaeological mortars from Pompeii (Campania, Italy) and identification of construction phases by compositional data analysis. Journal of Archaeological Sciences 37:22072223.CrossRefGoogle Scholar
Moropoulou, A, Bakolas, A, Bisbikou, K. 2000. Investigation of the technology of historic mortars. Journal of Cultural Heritage 1(1):4548.Google Scholar
Moropoulou, A, Cakmak, AS, Biscontin, G, Bakolas, A, Zendri, E. 2002. Advanced Byzantine cement based composites resisting earthquake stresses: the crushed brick/lime mortars of Justinian’s Hagia Sophia. Construction and Building Materials 16(8):543552.Google Scholar
Moropoulou, A, Bakolas, A, Anagnostopoulou, S. 2005. Composite materials in ancient structures. Cement & Concrete Composites 27:295300.Google Scholar
Morricone, A, Macchia, A, Campanella, L, David, M, De Togni, S, Turci, M, Maras, A, Meucci, C, Ronca, S. 2013. Archaeometrical analysis for the characterization of mortars from Ostia Antica. Proceeding of Youth in Conservation of Cultural Heritage, YOCOCU 2012. Procedia Chemistry (8):231238.Google Scholar
Nawrocka, D, Michniewicz, J. 2010. The radiocarbon dating of mortars from Wielka Waga, The Great Scales building in the Krakow market square. Proceeding of the 37 th International Symposium on Archaeometry. Springer: 517-524.Google Scholar
Nawrocka, DM, Michniewicz, J, Pawlyta, J, Pazdur, A. 2005. Application of radiocarbon method for dating of lime mortars. Geochronometria 24:109115.Google Scholar
Nawrocka, D, Czernik, J, Goslar, T. 2009. 14C dating of carbonate mortars from Polish and Israeli sites. Radiocarbon 51(2):857866.Google Scholar
Nonni, S. 2014. An innovative method to select a suitable fraction for mortar 14C dating: the Cryo2SoniC protocol [PhD dissertation]. Department of Earth Sciences, University of Rome Sapienza. Available from database Padis, Uniroma1: http://hdl.handle.net/10805/2402.Google Scholar
Nonni, S, Marzaioli, F, Secco, M, Passariello, I, Capano, M, Lubritto, C, Mignardi, S, Tonghini, C, Terrasi, F. 2013. 14C mortar dating: the case of the medieval Shayzar citadel, Syria. Radiocarbon 55(2-3):514525.Google Scholar
Ortega, LA, Cruz Zuluaga, M, Alonso-Olazabal, A, Inasausti, M, Murelaga, X, Ibanez, A. 2012. Improved Sample Preparation Methodology on Lime Mortar for Reliable 14C Dating. Radiometric Dating. InTech. p 3-20.Google Scholar
Pachiaudi, C, Marechal, J, Van Strydonck, M, Dupas, M, Dauchot-Dehon, M. 1986. Isotopic fractionation of carbon during carbon dioxide absorption by mortar. Radiocarbon 28(2):691697.Google Scholar
Pesce, GLA, Quarta, G, Calcagnile, L, D’Elia, M, Cavaciocchi, P, Lastrico, C, Guastella, R. 2009. Radiocarbon dating of lumps from aerial lime mortars and plasters: methodological issues and results from San Nicolò of Capodimonte Church (Camogli, Genoa, Italy). Radiocarbon 51(2):867872.Google Scholar
Pesce, GLA, Ball, RJ, Quarta, G, Calcagnile, L. 2012. Identification, extraction, and preparation of reliable lime samples for 14C dating of plasters and mortars with the “pure lime lumps” technique. Radiocarbon 54(3–4):933942.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Richardson, IG. 1999. The nature of C-S-H in hardened cement. Cement and Concrete Research 29(8):11311147.Google Scholar
Ringbom, A, Hale, J, Heinemeier, J, Lindroos, A, Brock, F. 2006. Mortar dating in medieval and classical archaeology. Construction History Society Newsletter 73:1118.Google Scholar
Ringbom, A, Heinemeier, J, Lindrooos, A, Brock, F. 2011. Mortar dating and Roman pozzolana results and interpretations. Commentationes Humanarum Letterarum 128:187208.Google Scholar
Ringbom, A, Lindroos, A, Heinemeier, J, Sonck-Koota, P. 2014. 19 years of mortar dating: learning from experience. Radiocarbon 56(2):619635.Google Scholar
Rittmann, EA. 1933. Die geologische bedingte evolution und differentiation des Somma-Vesuvius magmas. Zeitschrift fur Vulkanologie 15:12.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506519.Google Scholar
Salama, AIA. 2000. Mechanical techniques: particle size separation. In: Wilson AD, editor. Encyclopedia of Separation Science. Oxford Academic Press. p 32773289.Google Scholar
Sanchez-Moral, S, Luque, L, Canaveras, JC, Soler, V, Garcia-Guinea, J, Aparicio, A. 2005. Lime-pozzolana mortars in Roma catacombs: composition, structures and restoration. Cement and Concrete 35(8):15551565.Google Scholar
Seinfield, JH, Pandis, SN. 2006. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change. John Wiley and Sons.Google Scholar
Staccioli, RA. 2002. Acquedotti, fontane e terme di Roma antica. Newton & Compton. 253 p.Google Scholar
Stefanidou, M, Papayianni, I. 2005. The role of aggregates on the structure and properties of lime mortars. Cement and Concrete Composites 27(9–10):914919.Google Scholar
Stuiver, M, Smith, CS. 1965. Radiocarbon dating of ancient mortar and plaster. 6th International Conference on Radiocarbon and Tritium Dating. Pullman, WA: 338–43.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.Google Scholar
Terrasi, F, De Cesare, N, D’Onofrio, A, Lubritto, C, Marzaioli, F, Passariello, I, Rogalla, D, Sabbarese, C, Borriello, G, Casa, G, Palmieri, A. 2008. High precision 14C AMS at CIRCE. Nuclear Instruments and Methods in Physics Research B 266(10):22212224.CrossRefGoogle Scholar
Tomassetti, G. 1926. La Campagna Romana Antica, Medioevale e Moderna. Volume 4. Loescher & Co. p 8084.Google Scholar
Valeri, V. 2001. Brevi note sulle Terme a Porta Marina ad Ostia. Archeologia Classica 52:306322.Google Scholar
Van Strydonck, M, Dupas, M, Dauchotdehon, M, Pachiaudi, C, Marechal, J. 1986. The influence of contaminating (fossil) carbonate and the variations of δ13C in mortar dating. Radiocarbon 28(2A):702710.Google Scholar
Van Strydonck, M, Van der Borg, K, De Jong, A, Keppens, E. 1992. Radiocarbon dating of lime fractions and material from buildings. Radiocarbon 34(3):873879.Google Scholar
Ventriglia, U. 1971. La Geografia della Città di Roma. Rome: Amministrazione Provinciale di Roma.Google Scholar
Vitruvius. 1931. In: Granger, VF, translator. De Architectura. Heinemann.Google Scholar
Ward-Perkins, JB. 1979. Architettura Romana. Electa. 258 p.Google Scholar
Wilson, R, Spengler, JD. 1996. Particles in Our Air. Harvard University Press.Google Scholar