Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-09T21:56:57.841Z Has data issue: false hasContentIssue false

Radiocarbon and Stable Carbon Isotopes of Labile and Inert Organic Carbon in the Critical Zone Observatory in Illinois, USA

Published online by Cambridge University Press:  02 May 2018

Hong Wang*
Affiliation:
Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820USA State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xian, Shaanxi 710061 PRC
Andrew J. Stumpf
Affiliation:
Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL 61820USA
Praveen Kumar
Affiliation:
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801USA
*
*Corresponding author. Email: [email protected].

Abstract

We applied the high temperature pyrolysis-combustion technique to partition the total soil organic carbon (SOC) into labile and inert carbon pools for accelerator mass spectrometry radiocarbon (AMS 14C) dating and stable carbon isotope (δ13C), SOC, and carbonate carbon (CC) content analyses to examine SOC variability at a Critical Zone Observatory site in Illinois, USA. The AMS 14C dates of labile and inert carbon in the top 1.55 m overlap except in the Bt horizon. Below 1.55 m the labile carbon is younger by 8000–14,800 years. The SOC content decreases from 3.61% to 0.12% and CC content increases from 0% to 19.16% at this depth. Results indicate that SOC production exceeds its loss in the weathering zone causing a continuous turnover of both SOC pools. A small amount of modern SOC infiltrates into deeper sediment below 1.55 m, making the labile carbon pool much younger. Their difference of AMS 14C contents, ΔF14C, reveals 3−5% more modern carbon in the labile SOC pools except in the Bt horizon, further quantifying that <3−5% modern carbon with potential pollutants is translocated into the unweathered sediments. The δ13C reveals the sources for SOC cycling dynamics in both carbon pools at this site.

Type
Research Article
Copyright
© 2018 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Angst, G, John, S, Mueller, CW, Kögel-Knabner, I, Rethemeyer, J. 2016. Tracing the sources and spatial distribution of organic carbon in subsoils using a multi-biomarker approach. Scientific Reports 6:29478. DOI: 10.1038/srep29478.Google Scholar
Berendse, F, Berg, B, Bosatta, E. 1985. The effect of lignin and nitrogen on the decomposition of litter nutrient-poor ecosystems: a theoretical approach. Canadian Journal of Botany 65(6):11161120. DOI: 10.1139/b87-155.CrossRefGoogle Scholar
Brantley, SL, Goldhaber, MB, Ragnarsdottir, VK. 2007. Crossing disciplines and scales to understand the Critical Zone. Elements 3:307314. DOI: 10.2113/gselements.3.5.307.CrossRefGoogle Scholar
Davidson, EA, Janssens, IA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165173. DOI: 10.1038/nature04514.Google Scholar
Dawson, HJ, Ugolini, FC, Hrutfiord, BF, Zachara, J. 1978. Role of soluble organics in the soil processes of a podzol, Central Cascades, Washington. Soil Science 126(5):290296. DOI: 10.1097/00010694-197811000-00006.Google Scholar
Dreimanis, A. 1988. Tills their genetic terminology and classification. In: Goldthwait RP, Matsch CL, editors. Genetic Classification of Glacigenic Deposits. Rotterdam: A.A. Balkema. p 1784.Google Scholar
Grimley, DA, Anders, AM, Stumpf, AJ. 2016. Quaternary geology of the Upper Sangamon River Basin: Glacial, postglacial, and postsettlement history. In: Lasemi Z, Elrick SD, editors. 1967–2016— Celebrating 50 Years of Geoscience in the Mid-Continent. Illinois State Geological Survey, Guidebook. 43. p 5596. http://hdl.handle.net/2142/91529.Google Scholar
Gu, B, Schmitt, J, Chen, Z, Liang, L, McCarthy, JF. 1994. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science and Technology 28(1):3846. DOI: 10.1021/es00050a007.Google Scholar
Heimann, M, Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451:289292. DOI: 10.1038/nature06591.Google Scholar
Heimsath, AM, DiBiase, RA, Whipple, KX. 2012. Soil production limits and the transition to bedrock-dominated landscapes. Nature Geoscience 5:210214. DOI: 10.1038/ngeo1380.CrossRefGoogle Scholar
Hicks Pries, CE, Castanha, C, Porras, RC, Torn, MS. 2017. The whole-soil carbon flux in response to warming. Science 355(6332):14201423. DOI: 10.1126/science.aal1319.Google Scholar
Hoyle, FC, Murphy, DV. 2006. Seasonal changes in microbial function and diversity associated with stubble retention versus burning. Australian Journal of Soil Research 44(4):407423. DOI: 10.1071/SR05183.Google Scholar
Huang, YS, Li, BC, Bryant, C, Bol, R, Eglinton, G. 1999. Radiocarbon dating of aliphatic hydrocarbons: a new approach for dating passive fraction carbon in soil horizons. Soil Science Society of America Journal 63(5):11811187. https://dl.sciencesocieties.org/publications/sssaj/pdfs/63/5/1181.CrossRefGoogle Scholar
Jardine, PM, Weber, NL, McCarthy, JF. 1989. Mechanism of dissolved organic carbon adsorption on soil. Soil Science Society of America Journal 53(5):13781385. DOI: 10.2136/sssaj1989.03615995005300050013x.CrossRefGoogle Scholar
Kalbitz, K, Popp, P, Geyer, W, Hanschmann, G. 1997. [beta]-HCH mobilization in polluted wetland soils as influenced by dissolved organic matter. Science of The Total Environment 204(1):3748. DOI: 10.1016/S0048-9697(97)00164-2.CrossRefGoogle Scholar
Kalbitz, K, Solinger, S, Park, J-H, Michalzik, B, Matzner, E. 2000. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165(4):277304. DOI: 10.1097/00010694-200004000-00001.Google Scholar
Kumar, P. 2015. Critical Zone Observatory for Intensively Managed Landscapes (IML-CZO). Annual Report 2015. NSF Award #1331906. https://criticalzone.org/images/national/associatedfiles/IML/IMLCZO_Annual_Report_2015.pdf Google Scholar
Lutzow, MV, Kogel-Knabner, I, Ekschmitt, K, Matzner, E, Guggenberger, G, Marschner, B, Flessa, H. 2006. Stabilization of organic matter in temperate soil: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science 57(4):426445. DOI: 10.1111/j.1365-2389.2006.00809.x.Google Scholar
McDowell, WH, Wood, T. 1984. Soil processes control dissolved organic carbon concentration in stream water. Soil Science 137(1):2332.Google Scholar
O’Leary, MH. 1981. Carbon isotope fractionation in plants. Phytochemistry 20(4):553567. DOI: 10.1016/0031-9422(81)85134-5.CrossRefGoogle Scholar
Raulund-Rasmussen, K, Borrggaard, OK, Hansen, HCB, Olsson, M. 1998. Effect of natural soil solutes on weathering rates of soil minerals. European Journal of Soil Science 49(3):397406. DOI: 10.1046/j.1365-2389.1998.4930397.x.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Turney, CSM, van der Plicht, J. 2013. IntCal13 and MARINE13 radiocarbon age calibration curves 0–50000 years cal BP. Radiocarbon 55(4):18691887. DOI: 10.2458/azu_js_rc.55.16947.Google Scholar
Richter, DB, Billings, SA. 2015. ‘One physical system’: Tansley’s ecosystem as earth’s critical zone. New Phytologist 206(3):900912. DOI: 10.1111/nph.13338.Google Scholar
Rovira, P, Vallyjo, VR. 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107(1–2):109141. DOI: 10.1016/S0016-7061(01)00143-4.Google Scholar
Rumpel, C, Kögel-Knabner, I. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil 338(1):143158. DOI: 10.1007/s11104-010-0391-5.CrossRefGoogle Scholar
Sanderman, J, Baisden, WT, Fallon, S. 2016. Redefining the inert organic carbon pool. Soil Biology and Biochemistry 92:149152. DOI: 10.1016/j.soilbio.2015.10.005.Google Scholar
Southon, JR. 2007. Graphite reactor memory—Where is it from and how to minimize it? Nuclear Instruments and Methods in Physics Research B 259(1):288292. DOI: 10.1016/j.nimb.2007.01.251.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363. DOI: 10.1017/S0033822200003672.Google Scholar
Trumbore, SE. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411. DOI: 10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2.Google Scholar
von Blanckenburg, F, Schuessler, JA. 2014. Element cycling in the Critical Zone as viewed by new isotope tools. Procedia Earth and Planetary Science 10:173178. DOI: 10.1016/j.proeps.2014.08.053.CrossRefGoogle Scholar
Wang, H, Hackley, KC, Panno, SV, Coleman, DD, Liu, JC-L, Brown, J. 2003. Pyrolysis combustion 14C dating of soil organic matter. Quaternary Research 60(3):348355. DOI: 10.1016/j.yqres.2003.07.004.Google Scholar