Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:08:31.410Z Has data issue: false hasContentIssue false

Potential Use of Archaeological Snail Shells for the Calculation of Local Marine Reservoir Effect

Published online by Cambridge University Press:  09 February 2016

Carla Carvalho*
Affiliation:
Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24020-141, RJ, Brazil
Kita Macario
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. General Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Maria Isabela De Oliveira
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. General Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Fabiana Oliveira
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. General Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Ingrid Chanca
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. General Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Eduardo Alves
Affiliation:
Instituto de Física, Universidade Federal Fluminense, Av. General Milton Tavares de Souza, s/n, Niterói, 24210-346, RJ, Brazil
Rosa Souza
Affiliation:
Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24020-141, RJ, Brazil
Orangel Aguilera
Affiliation:
Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Outeiro São João Batista, s/n, Niterói, 24020-141, RJ, Brazil
Katerina Douka
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Dyson Perrins Building, South Parks Road, Oxford OX1, UK
*
Corresponding author. Email: [email protected].

Abstract

Shellmounds are archaeological sites found across the Brazilian coast and form an important record of the human occupation of this area during the Holocene. The presence of both terrestrial and marine remains within the same archaeological context enables the comparison of different carbon reservoirs. There is only a small number of similar studies for the coast of south-southeastern Brazil. Previous work was based on the analysis of pre-bomb shells from museum collections and paired charcoal/marine shells from archaeological sites. This article assesses the potential use of terrestrial shells as representative of atmospheric carbon reservoir in the calculation of the marine reservoir effect (MRE) of the southeastern Brazilian coast. The presence of both terrestrial and marine shells over several archaeological layers represents a great potential for calculating reservoir corrections and their temporal variation.

Type
Articles
Copyright
Copyright © 2015 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, E, Macario, K, Souza, R, Aguilera, O, Goulart, AC, Scheel-Ybert, R, Bachelet, C, Carvalho, C, Oliveira, F, Douka, K. 2015. Marine reservoir corrections on the southeastern coast of Brazil: paired samples from the Saquarema shellmound. Radiocarbon 57(4). doi:10.2458/azu_rc.57.18404.Google Scholar
Angulo, RJ, Souza, MC, Reimer, PJ, Sasaoka, SK. 2005. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47(1):6773.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ, Barber, J, Higney, E, Scott, EM. 2004. Holocene variations in the Scottish marine radiocarbon reservoir effect. Radiocarbon 46(2):611–20.Google Scholar
Ascough, PL, Cook, GT, Dugmore, AJ. 2009. North Atlantic marine 14C reservoir effects: implications for late-Holocene chronological studies. Geochronology 4(3):171–80.Google Scholar
Bayes, TR. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society 53:370418.Google Scholar
Barnhardt, MC. 1992. Acid-base regulation in pulmonate molluscs. The Journal of Experimental Zoology 263:120–6.Google Scholar
Breure, ASH. 1979. Systematics, phylogeny and zoogeography of Bulimulinae (Mollusca). Zoologische Verhandelingen Leiden 168:1215.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720–30.Google Scholar
Buck, CE, Litton, CD, Smith, AFM. 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19(5):497512.CrossRefGoogle Scholar
Culleton, BJ. 2006. Implications of a freshwater radiocarbon reservoir correction for the timing of late Holocene settlement of the Elk Hills, Kern County, California. Journal of Archaelogical Sciences 33(9):1331–9.Google Scholar
Culleton, BJ, Kennett, DJ, Ingram, BL, Erlandson, JM, Southon, JR. 2006. Intrashell radiocarbon variability in marine mollusks. Radiocarbon 48(3):387400.Google Scholar
Eastoe, CJ, Fish, S, Fish, P, Gaspar, MD, Long, A. 2002. Reservoir corrections for marine samples from the South Atlantic coast, Santa Catarina State, Brazil. Radiocarbon 44(1):145–8.Google Scholar
Evin, J, Marechal, J, Pachiaudi, C, Puissegur, JJ. 1980. Conditions involved in dating terrestrial shells. Radiocarbon 22(2):545–55.Google Scholar
Fernandes, R, Bergemann, S, Hartz, S, Grootes, PM, Nadeau, M-J, Melzner, A, Rakowski, A, Hüls, M. 2012. Mussels with meat: bivalve tissue-shell radiocarbon age differences and archaeological implications. Radiocarbon 54(3–4):953–65.Google Scholar
Goodfriend, GA. 1987. Radiocarbon age anomalies in shell carbonate of land snails from semi-arid areas. Radiocarbon 29(2):159–67.Google Scholar
Goodfriend, GA, Hood, DG. 1983. Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25(3):810–30.Google Scholar
Goodfriend, GA, Stipp, JJ. 1983. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11:575–7.2.0.CO;2>CrossRefGoogle Scholar
Goodfriend, GA, Ellis, GL, Toolin, LJ. 1999. Radiocarbon age anomalies in land snail shells from Texas: ontogenetic, individual and geographic patterns of variation. Radiocarbon 41(2):149–56.Google Scholar
Gordon, JE, Harkness, DD. 1992. Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: implications for reservoir corrections in radiocarbon dating. Quaternary Science Reviews 11(7-8):697708.Google Scholar
Hogg, AG, Hua, Q, Blackwell, PG, Niu, M, Buck, CE, Guilderson, TP, Heaton, TJ, Palmer, JG, Reimer, PJ, Reimer, RW, Turney, CSM, Zimmerman, SRH. 2013. SHCal13 Southern Hemisphere calibration, 0-50,000 years cal BP. Radiocarbon 55(4):1889–903.Google Scholar
Hua, Q, Barbetti, M, Rakowski, AJ. 2013. Atmospheric radiocarbon for the period 1950-2010. Radiocarbon 55(4):2059–72.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0-26 cal kyr BP. Radiocarbon 46(3):1059–86.Google Scholar
Ikeda, Y, de Miranda, LB, Rock, NJ. 1974. Observations on stages of upwelling in the region of Cabo Frio (Brazil) as conducted by continuous surface temperature and salinity measurements. Boletim Instuto Oceanográfico, São Paulo 23:3346.Google Scholar
Kennett, DJ, Ingram, BL, Erlandson, JM, Walker, P. 1997. Evidence for temporal fluctuations in marine radiocarbon reservoir ages in the Santa Barbara Channel, Southern California. Journal of Archaeological Science 24(11):1051–9.Google Scholar
Kneip, LM. 2001. O sambaqui de Manitiba I e outros sambaquis de Saquarema, RJ. Documentos de Trabalho (5) Série Arqueologia, Departamento de Antropologia, Museu Nacional, Universidade Federal do Rio de Janeiro. 91 p.Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, Pessenda, LCR, Moraes, LMB, Campos, TB, Cherkinsky, A. 2013. The Brazilian AMS Radiocarbon Laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2-3):325–30.Google Scholar
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Marques, AN, Alves, EQ, Oliveira, FM, Chanca, IS, Carvalho, C, Anjos, RM, Pamplona, FC, Silva, EP. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56(2):489–99.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Aguilera, OA, Carvalho, C, Oliveira, FM, Alves, EQ, Chanca, IS, Silva, EP, Douka, K, Decco, J, Trindade, DC, Marques, AN, Anjos, RM, Pamplona, FC. 2015. Marine reservoir effect on the Southeastern coast of Brazil: results from the Tarioba shellmound paired samples. Journal of Environmental Radioactivity 143:14–9.Google Scholar
Nadal de Masi, MA. 2001. Pescadores coletores da costa sul do Brasil. Pesquisas Antropologia 57:1136.Google Scholar
Petchey, F, Ulm, S, David, B, McNiven, I, Asmussen, B, Tomkins, H, Dolby, N, Aplin, K, Richards, T, Rowe, C, Leavesley, M, Mandui, H. 2013. High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, Southern Coastal Papua New Guinea. Archaeological and Anthropological Sciences 5(1):6980.Google Scholar
Pigati, JS, Rech, JA, Nekola, JC. 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5:519–32.Google Scholar
Quarta, G, Romaniello, L, D'Elia, M, Mastronuzzi, G, Calcagnile, L. 2007. Radiocarbon age anomalies in pre- and post-bomb land snails from the coastal Mediterranean basin. Radiocarbon 49(2):817–26.Google Scholar
Rakovan, MT, Rech, JA, Pigati, JS, Nekola, JC, Wiles, GC. 2013. An evaluation of Mesodon and other larger terrestrial gastropod shells for dating late Holocene and historic alluvium in the Midwestern USA. Geomorphology 193:4756.Google Scholar
Rech, JA, Nekola, JC, Pigati, JS. 2012. Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA. Quaternary Research 77(2):289–92.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–87.Google Scholar
Romaniello, L, Quarta, G, Mastronuzzi, G, D'Elia, M, Calcagnile, L. 2008. 14C age anomalies in modern land snails shell carbonate from southern Italy. Quaternary Geochronology 3(1–2):6875.Google Scholar
Rubin, M, Likins, RC, Berry, EG. 1963. On the validity of radiocarbon dates from snail shells. Journal of Geology 71(1):84–9.Google Scholar
Russell, N, Cook, GT, Ascough, PL, Dugmore, AJ. 2010. Spatial variation in the marine radiocarbon reservoir effect throughout the Scottish post-Roman to late Medieval period: North Sea values (500–1350 BP). Radiocarbon 52(3):1166–81.Google Scholar
Soares, AMM, Dias, JMA. 2006. Coastal upwelling and radiocarbon-evidence for temporal fluctuations in ocean reservoir effect off Portugal during the Holocene. Radiocarbon 48(1):4560.Google Scholar
Soares, AMM, Dias, JMA. 2007. Reservoir effect of coastal waters off western and northwestern Galicia. Radiocarbon 49(2):925–36.Google Scholar
Stott, LD. 2002. The influence of diet of the δ13C of shell carbon in the pulmonate snail Helix aspersa . Earth and Planetary Letters 195(3–4):248–59.Google Scholar
Stuiver, M, Braziunas, T. 1993. 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Tamers, MA. 1970. Validity of radiocarbon dates on terrestrial snail shells. American Antiquity 35(1):94100.Google Scholar
Xu, B, Gu, Z, Han, J, Hao, Q, Lu, Y, Wang, L, Wu, N, Peng, Y. 2011. Radiocarbon age anomalies of land snail shells in the Chinese Loess Plateau. Quaternary Geochronology 6(3–4):383–9.Google Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1):320–9.Google Scholar
Yanes, Y, Romanek, CS, Molina, F, Cámara, JA, Delgado, A. 2011. Holocene paleoenvironment (7,200–4,000 cal. years BP) of the Los Castillejos archaeological site (SE Spain) as inferred from stable isotopes of land snail shells. Quaternary International 244:6775.Google Scholar
Yanes, Y, Gutiérrez-Zugasti, I, Delgado, A. 2012. Lateglacial to Holocene transition in northern Spain deduced from land-snail shelly accumulations. Quaternary Research 78(2):373–85.Google Scholar
Yates, TJS. 1986. Studies of non-marine mollusks for the selection of shell samples for radiocarbon dating. Radiocarbon 28(2A):457–63.Google Scholar
Zaarur, S, Olack, G, Affek, HP. 2011. Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta 75(22):6859–69.Google Scholar
Zhou, W, Head, WJ, Wang, F, Donahue, D, Jull, AJT. 1999. The reliability of AMS radiocarbon dating of shells from China. Radiocarbon 41(1):1724.Google Scholar