Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T01:14:07.530Z Has data issue: false hasContentIssue false

Pompeii AD 79: A Natural Bone Diagenesis Experiment

Published online by Cambridge University Press:  04 August 2016

Antoine Zazzo*
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, pratiques et environnements (UMR 7209), Sorbonne Universités, Muséum national d’histoire naturelle, CNRS, CP56, 55 rue Buffon, 75005 Paris, France.
Sébastien Lepetz
Affiliation:
Archéozoologie, Archéobotanique: Sociétés, pratiques et environnements (UMR 7209), Sorbonne Universités, Muséum national d’histoire naturelle, CNRS, CP56, 55 rue Buffon, 75005 Paris, France.
*
*Corresponding author. Email: [email protected].

Abstract

This study aims at comparing the reliability of different types of apatite fractions for which collagen cannot be dated. We focused on the remains of individuals found at the necropolis of Porta Nocera near Pompeii, and for which the date of burial can be assessed independently. The dated human samples range between 1805±49 and 5570±120 14C yr BP and can display a large (up to 1200 14C yr) intra-individual age variability. We show that while a marine diet or an old-wood effect could explain the smallest age shifts, they are not able to explain the largest ones, and propose diagenesis as the main cause. The 14C depletion is likely due to the influence of the 14C-free CO2 emissions of the nearby Vesuvius volcano and the Campi Flegrei volcanic system on the age of secondary carbonate incorporated into the bone and enamel crystallites during diagenesis. This study demonstrates that in volcanic contexts, a large deviation from expected age can be measured, even in calcined apatites. Our calculations indicate that while the absolute amount of contamination is lower in calcined bones than in burnt bone and enamel apatite, its impact on the 14C age of the sample can be much higher due to the low carbon content of calcined bones.

Type
Puzzles in Archaeological Chronologies
Copyright
© 2016 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Berkani, H, Zazzo, A, Paris, F. 2015. Les tumulus à couloir et enclos de la Tassili du Fadnoun, Tassili Azger (Algérie): premières datations par la méthode du radiocarbone. Journal of African Archaeology 13(1):5970.CrossRefGoogle Scholar
Brock, F, Geoghegan, V, Thomas, B, Jurkschat, K, Higham, TFG. 2013. Analysis of bone “collagen” extraction products for radiocarbon dating. Radiocarbon 55(2–3):445463.Google Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2–3):720730.Google Scholar
Cherkinsky, A, Glassburn, CL, Reuther, J. 2015. Preservation of collagen and bioapatite fractions extracted from bison teeth in permafrost conditions. Nuclear Instruments and Methods in Physics Research B 361:392396.CrossRefGoogle Scholar
Chiodini, G, Caliro, S, Cardellini, C, Granieri, D, Avino, R, Baldini, A, Donnini, M, Minopoli, C. 2010. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. Journal of Geophysical Research: Solid Earth 115:B03205.CrossRefGoogle Scholar
Coubray, S. 2013. Combustibles, modes opératoires des bûchers et rituels. L’analyse anthracologique. In: Van Andringa W, Duday H, Lepetz S, editors. Mourir à Pompei - Fouille d’un quartier funéraire de la nécropole romaine de Porta Nocera (2003–2007). Rome: Ecole Française de Rome. p 14331449.Google Scholar
Craig, OE, Bondioli, L, Fattore, L, Higham, T, Hedges, R. 2013. Evaluating marine diets through radiocarbon dating and stable isotope analysis of victims of the AD79 eruption of Vesuvius. American Journal of Physical Anthropology 152(3):345352.CrossRefGoogle ScholarPubMed
Dal Sasso, G, Maritan, L, Usai, D, Angelini, I, Artioli, G. 2014. Bone diagenesis at the micro-scale: bone alteration patterns during multiple burial phases at Al Khiday (Khartoum, Sudan) between the Early Holocene and the II century AD. Palaeogeography, Palaeoclimatology, Palaeoecology 416:3042.Google Scholar
De Mulder, G, Van Strydonck, M, Annaert, R, Boudin, M. 2012. A Merovingian surprise: early Medieval radiocarbon dates on cremated bone (Borsbeek, Belgium). Radiocarbon 54(3–4):581588.Google Scholar
di Lernia, S, Tafuri, MA, Gallinaro, M, Alhaique, F, Balasse, M, Cavorsi, L, Fullagar, PD, Mercuri, AM, Monaco, A, Perego, A, Zerboni, A. 2013. Inside the “African Cattle Complex”: animal burials in the Holocene Central Sahara. PLoS ONE 8(2):e56879.Google Scholar
Hedges, REM, Lee-Thorp, JA, Tuross, NC. 1995. Is tooth enamel carbonate a suitable material for radiocarbon dating? Radiocarbon 37(2):285290.Google Scholar
Hedges, REM. 2002. Bone diagenesis: an overview of processes. Archaeometry 44:319328.Google Scholar
Hüls, CM, Erlenkeuser, H, Nadeau, MJ, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2):587599.Google Scholar
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249254.CrossRefGoogle Scholar
Lebon, M, Reiche, I, Gallet, X, Bellot-Gurlet, L, Zazzo, A. 2016. Rapid quantification of bone collagen content by ATR-FTIR spectroscopy. Radiocarbon 58(1):131145.Google Scholar
Maurer, A-F, Person, A, Tütken, T, Amblard-Pison, S, Ségalen, L. 2014. Bone diagenesis in arid environments: an intra-skeletal approach. Palaeogeography, Palaeoclimatology, Palaeoecology 416:1729.CrossRefGoogle Scholar
Nakamura, T, Sagawa, S, Yamada, T, Kanehara, M, Tsuchimoto, N, Minami, M, Omori, T, Okuno, M, Ohta, T. 2010. Radiocarbon dating of charred human bone remains preserved in urns excavated from medieval Buddhist cemetery in Japan. Nuclear Instruments and Methods in Physics Research B 268(7–8):985989.CrossRefGoogle Scholar
Olsen, J, Hornstrup, KM, Heinemeier, J, Bennike, P, Thrane, H. 2011. Chronology of the Danish Bronze Age based on 14C dating of cremated bone remains. Radiocarbon 53(2):261275.CrossRefGoogle Scholar
Olsen, J, Heinemeier, J, Hornstrup, KM, Bennike, P, Thrane, H. 2013. ‘Old wood’ effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40(1):3034.Google Scholar
Paris, F, Saliège, J-F. 2007. Chronologie des monuments funéraires sahariens. Problèmes, méthode et résultats. Tamanrasset. Travaux du Centre National de Recherches Préhistoriques, Anthropologiques et Historiques. p 275279.Google Scholar
Pasquier-Cardin, A, Allard, P, Ferreira, T, Hatté, C, Coutinho, R, Fontugne, M, Jaudon, M. 1999. Magma-derived CO2 emissions recorded in 14C and 13C content of plants growing in Furnas caldera, Azores. Journal of Volcanology and Geothermal Research 92(1–2):195207.Google Scholar
Person, A, Bocherens, H, Mariotti, A, Renard, M. 1996. Diagenetic evolution and experimental heating of bone phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 126(1–2):135149.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Saliège, JF, Person, A, Paris, F. 1995. Preservation of 13C/12C original ratio and 14C dating of the mineral fraction of human bones from Saharan tombs, Niger. Journal of Archaeological Science 22(2):301312.Google Scholar
Sereno, PC, Garcea, EAA, Jousse, H, Stojanowski, CM, Saliège, J-F. 2008. Lakeside cemeteries in the Sahara, 5000 years of Holocene population and environmental change. PLoS ONE 3:e2995.Google Scholar
Shipman, P, Foster, G, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11(4):307325.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Mativier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271280.Google Scholar
Snoeck, C, Brock, F, Schulting, RJ. 2014. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates. Radiocarbon 56(2):591602.Google Scholar
Stiner, MC, Kuhn, SL, Weiner, S, Bar-Yosef, O. 1995. Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science 22(2):223237.Google Scholar
Van Andringa, W, Duday, H, Lepetz, S. 2013. Mourir à Pompei - Fouille d’un quartier funéraire de la nécropole romaine de Porta Nocera (2003–2007). Rome: Ecole Française de Rome.Google Scholar
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2):578586.CrossRefGoogle Scholar
Yoneda, M, Tanaka, A, Shibata, Y, Morita, M, Uzawa, K, Hirota, M, Uchida, M. 2002. Radiocarbon marine reservoir effect in human remains from the Kitakogane site, Hokkaido, Japan. Journal of Archaeological Science 29(5):529536.Google Scholar
Zazzo, A. 2014. Bone and enamel carbonate diagenesis: a radiocarbon prospective. Palaeogeography, Palaeoclimatology, Palaeoecology 416:168178.Google Scholar
Zazzo, A, Saliège, JF. 2011. Radiocarbon dating of biological apatites: a review. Palaeogeography, Palaeoclimatology, Palaeoecology 310(1–2):5261.Google Scholar
Zazzo, A, Saliège, JF, Person, A, Boucher, H. 2009. Radiocarbon dating of calcined bones: where does the carbon come from? Radiocarbon 51(2):601611.CrossRefGoogle Scholar
Zazzo, A, Saliège, JF, Lebon, M, Lepetz, S, Moreau, C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54(3–4):855866.CrossRefGoogle Scholar
Zazzo, A, Lebon, M, Chiotti, L, Comby, C, Delque-Kolic, E, Nespoulet, R, Reiche, I. 2013. Can we use calcined bones for 14C dating the Paleolithic? Radiocarbon 55(2–3):14091421.Google Scholar
Zazzo, A, Munoz, O, Saliège, J-F. 2014. Diet and mobility in a late Neolithic population of coastal Oman inferred from radiocarbon dating and stable isotope analysis. American Journal of Physical Anthropology 153(3):353364.Google Scholar
Supplementary material: File

Zazzo and Lepetz supplementary material

Supplementary Table

Download Zazzo and Lepetz supplementary material(File)
File 18.4 KB