Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T09:14:19.690Z Has data issue: false hasContentIssue false

A Marine Reservoir Correction for the Houtman-Abrolhos Archipelago, East Indian Ocean, Western Australia

Published online by Cambridge University Press:  19 January 2016

Peter Squire*
Affiliation:
1Southern Cross GeoScience, Southern Cross University, Military Rd, Lismore NSW 2480, Australia
Renaud Joannes-Boyau
Affiliation:
1Southern Cross GeoScience, Southern Cross University, Military Rd, Lismore NSW 2480, Australia
Anja M Scheffers
Affiliation:
1Southern Cross GeoScience, Southern Cross University, Military Rd, Lismore NSW 2480, Australia
Luke D Nothdurft
Affiliation:
3Earth, Environmental and Biological Sciences, Queensland University of Technology, Gardens Point Campus, GPO Box 2434, Brisbane, QLD 4001, Australia
Quan Hua
Affiliation:
4Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Lindsay B Collins
Affiliation:
5Department of Applied Geology, Curtin University, Perth WA 6845, Australia
Sander R Scheffers
Affiliation:
6Marine Ecology Research Centre, School of Environment, Science & Engineering, Southern Cross University, Lismore NSW 2480, Australia
Jian-xin Zhao
Affiliation:
7School of Earth Sciences, University of Queensland, Brisbane QLD 4072, Australia
*
2Corresponding author. Email: [email protected].

Abstract

High-precision analysis using accelerator mass spectrometry (AMS) was performed upon known-age Holocene and modern, pre-bomb coral samples to generate a marine reservoir age correction value (ΔR) for the Houtman-Abrolhos Archipelago (28.7°S, 113.8°E) off the Western Australian coast. The mean ΔR value calculated for the Abrolhos Islands, 54 ± 30 yr (1 σ) agrees well with regional ΔR values for Leeuwin Current source waters (N-NW Australia-Java) of 60 ± 38 yr. The Abrolhos Islands show little variation with ΔR values of the northwestern and north Australian coast, underlining the dominance of the more equilibrated western Pacific-derived waters of the Leeuwin Current over local upwelling. The Abrolhos Islands ΔR values have remained stable over the last 2896 cal yr BP, being also attributed to the Leeuwin Current and the El Niño Southern Oscillation (ENSO) signal during this period. Expected future trends will be a strengthening of the teleconnection of the Abrolhos Islands to the climatic patterns of the equatorial Pacific via enhanced ENSO and global warming activity strengthening the Leeuwin Current. The possible effect upon the trend of future ΔR values may be to maintain similar values and an increase in stability. However, warming trends of global climate change may cause increasing dissimilarity of ΔR values due to the effects of increasing heat stress upon lower-latitude coral communities.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bowman, GM. 1985. Oceanic reservoir correction for marine radiocarbon dates from northwestern Australia. Australian Archaeology 20:5867.CrossRefGoogle Scholar
Bowman, G, Harvey, N. 1983. Radiocarbon dating marine shells in South Australia. Australian Archaeology 17:113–2.CrossRefGoogle Scholar
Burr, GS, Beck, JW, Corrège, T, Cabioch, G, Taylor, FW, Donahue, DJ. 2009. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51(1):319–3.CrossRefGoogle Scholar
Collins, LB, Zhao, J-X, Freeman, H. 2006. A high-precision record of mid–late Holocene sea-level events from emergent coral pavements in the Houtman Abrolhos Islands, southwest Australia. Quaternary International 145–146:7885.CrossRefGoogle Scholar
Domingues, CM, Wijffels, SE, Maltrud, ME, Church, JA, Tomczak, M. 2006. Role of eddies in cooling the Leeuwin Current. Geophysical Research Letters 33(5): L05603, doi: 10.1029/2005GL025216.CrossRefGoogle Scholar
Domingues, CM, Maltrud, ME, Wijffels, SE, Church, JA, Tomczak, M. 2007. Simulated Lagrangian pathways between the Leeuwin Current System and the upper-ocean circulation of the southeast Indian Ocean. Deep-Sea Research II 54(8–10):797817.CrossRefGoogle Scholar
Feng, M, Majewski, LJ, Fandry, C, Waite, AM. 2007. Characteristics of two counter-rotating eddies in the Leeuwin Current system off the Western Australian coast. Deep-Sea Research II 54(8–10):961–8.Google Scholar
Fink, D, Hotchkiss, M, Hua, Q, Jacobsen, G, Smith, A, Zoppi, U, Child, D, Mifsud, C, van der Gaast, H, Williams, A. 2004. The ANTARES AMS facility at ANSTO. Nuclear Instruments and Methods in Physics Research B 223–224:109–1.Google Scholar
Gillespie, R. 1977. Sydney University natural radiocarbon measurements IV. Radiocarbon 19(1):101–1.CrossRefGoogle Scholar
Gillespie, R, Polach, H. 1979. The suitability of marine shells for radiocarbon dating of Australian prehistory. In: Berger, R, Suess, H, editors. Proceedings of the 9th International Conference on Radiocarbon Dating. Los Angeles: University of California Press. p 404–2.Google Scholar
Grottoli, AG, Eakin, CM. 2007. A review of modern coral Δ180 and Δ14C proxy records. Earth-Science Reviews 81(1–2):6791.CrossRefGoogle Scholar
Hanson, CE, Pattiaratchi, CB, Waite, AM. 2005. Sporadic upwelling on a downwelling coast: phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia. Continental Shelf Research 25(12–13):1561–82.Google Scholar
Hatcher, B. 1991. Coral reefs in the Leeuwin Current—an ecological perspective. Journal of the Royal Society of Western Australia 74:115–2.Google Scholar
Hatcher, B, Kirkman, H, Wood, W. 1987. Growth of the kelp Ecklonia radiata near the northern limit of its range in Western Australia. Marine Biology 95(1):6373.CrossRefGoogle Scholar
Hillaire-Marcel, C. 2009. The U-series dating of (biogenic) carbonates. IOP Conference Series: Earth and Environmental Science 5(1):12008.Google Scholar
Hua, Q, Jacobsen, GE, Zoppi, U, Lawson, EM, Williams, AA, Smith, AM, McGann, MJ. 2001. Progress in radiocarbon target preparation at the ANTARES AMS Centre. Radiocarbon 43(2A):275–8.CrossRefGoogle Scholar
Hua, Q, Woodroffe, C, Barbetti, M, Smithers, S, Zoppi, U, Fink, D. 2004. Marine reservoir correction for the Cocos (Keeling) Islands, Indian Ocean. Radiocarbon 46(2):603–1.CrossRefGoogle Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.CrossRefGoogle Scholar
Kuhnert, H, Pätzold, J, Hatcher, B, Wyrwoll, KH, Eisenhauer, A, Collins, L, Zhu, Z, Wefer, G. 1999. A 200-year coral stable oxygen isotope record from a high-latitude reef off Western Australia. Coral Reefs 18(1):112.CrossRefGoogle Scholar
Kuhnert, H, Pätzold, J, Wyrwoll, KH, Wefer, G. 2000. Monitoring climate variability over the past 116 years in coral oxygen isotopes from Ningaloo Reef, Western Australia. International Journal of Earth Sciences 88(4):725–3.CrossRefGoogle Scholar
Lau, DCP, Leung, KMY. 2004. Feeding physiology of the carnivorous gastropod Thais clavigera (Kuster): do they cat “soup”? Journal of Experimental Marine Biology and Ecology 312(1):4366.CrossRefGoogle Scholar
Lawson, E, Elliott, G, Fallon, J, Fink, D, Hotchkis, M, Hua, Q, Jacobsen, G, Lee, P, Smith, A, Tuniz, C, Zoppi, U. 2000. AMS at ANTARES—the first 10 years. Nuclear Instruments and Methods in Physics Research B 172(14):95–9.CrossRefGoogle Scholar
Li, J, Clarke, AJ. 2004. Coastline direction, interannual flow, and the strong El Niño currents along Australia's nearly zonal southern coast. Journal of Physical Oceanography 34(11):2373–81.CrossRefGoogle Scholar
McCulloch, M, Mortimer, G. 2008. Applications of the 238U–230Th decay series to dating of fossil and modern corals using MC-ICPMS. Australian Journal of Earth Sciences 55(6–7):955–6.CrossRefGoogle Scholar
McGregor, H, Gagan, M, McCulloch, M, Hodge, E, Mortimer, G. 2008. Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quaternary Geochronology 3(3):213–2.CrossRefGoogle Scholar
McGregor, HV, Hcllstrom, J, Fink, D, Hua, Q, Woodroffe, CD. 2011. Rapid U-series dating of young fossil corals by laser ablation MC-ICPMS. Quaternary Geochronology 6(2):195206.CrossRefGoogle Scholar
Nothdurft, L, Webb, G. 2009. Earliest diagenesis in scleractinian coral skeletons: implications for palaeoclimate-sensitive geochemical archives. Facies 55(2):161201.CrossRefGoogle Scholar
Nothdurft, LD, Webb, GE, Bostrom, T, Rintoul, L. 2007. Calcite-filled borings in the most recently deposited skeleton in live-collected Porites (Scleractinia): implications for trace element archives. Geochimica et Cosmochimica Acta 71(22):5423–38.CrossRefGoogle Scholar
O'Connor, S, Ulm, S, Fallon, S, Barham, A, Loch, I. 2010. Pre-bomb marine reservoir variability in the Kimberley region, western Australia. Radiocarbon 52(3):1158–65.CrossRefGoogle Scholar
Pearce, A, Pattiaratchi, C. 1999. The Capes Current: a summer countercurrent flowing past Cape Leeuwin and Cape Naturaliste, Western Australia. Continental Shelf Research 19(3):401–2.CrossRefGoogle Scholar
Pearce, A, Phillips, B. 1988. ENSO events, the Leeuwin Current, and larval recruitment of the western rock lobster. ICES Journal of Marine Science 45(1):1321.CrossRefGoogle Scholar
Petchey, F, Allen, MS, Addison, DJ, Anderson, A. 2009. Stability in the South Pacific surface marine 14C reservoir over the last 750 years. Evidence from American Samoa, the southern Cook Islands and the Marquesas. Journal of Archaeological Science 36(10):2234–43.CrossRefGoogle Scholar
Reimer, PJ, Reimer, R. 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43(2A):461–3.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marinc09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Robinson, LF, Adkins, JF, Fernandez, DP, Burnett, DS, Wang, S-L, Gagnon, AC, Krakauer, N. 2006. Primary U distribution in scleractinian corals and its implications for U series dating. Geochemistry, Geophysics, Geosystems 7(5):Q05022.CrossRefGoogle Scholar
Scheffers, AM, Scheffers, SR, Kelletat, DH, Squire, P, Collins, L, Feng, Y, Zhao, J-X, Joannes-Boyau, R, May, SM, Schellmann, G, Freeman, H. 2012. Coarse clast ridge sequences as suitable archives for past storm events? Case study on the Houtman Abrolhos, Western Australia. Journal of Quaternary Science 27(7):713–2.CrossRefGoogle Scholar
Scholz, D, Mangini, A, Felis, T. 2004. U-series dating of diagenetically altered fossil reef corals. Earth and Planetary Science Letters 218(1–2):163–7.CrossRefGoogle Scholar
Southon, J, Kashgarian, M, Fontugne, M, Metivier, B, Yim, WW-S. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167–8.CrossRefGoogle Scholar
Stirling, C, Esat, T, McCulloch, M, Lambeck, K. 1995. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial. Earth and Planetary Science Letters 135(1–4):115–3.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–8.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–6.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ. 1986. A computer program for radiocarbon age calibration. Radiocarbon 28(2B):1022–30.CrossRefGoogle Scholar
Stuiver, M, Pearson, GW, Braziunas, TF. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.CrossRefGoogle Scholar
Ulm, S. 2006. Australian marine reservoir effects: a guide to ΔR values. Australian Archaeology 63:5760.CrossRefGoogle Scholar
van der Kaars, S, De Deckker, P. 2002. A Late Quaternary pollen record from deep-sea core Fr 10/95, GC17 offshore Cape Range Peninsula, northwestern Western Australia. Review of Paleobotany and Palynology 120(1–2):1739.CrossRefGoogle Scholar
Waite, A, Thompson, P, Pesant, S, Feng, M, Beckley, L, Domingues, C, Gaughan, D, Hanson, C, Holl, C, Koslow, T. 2007. The Leeuwin Current and its eddies: an introductory overview. Deep Sea Research II 54(8–10):789–9.CrossRefGoogle Scholar
Woo, M, Pattiaratchi, C, Schroeder, W. 2006. Summer surface circulation along the Gascoyne continental shelf, Western Australia. Continental Shelf Research 26(1):132–5.CrossRefGoogle Scholar
Wyrwoll, K, Greenstein, B, Kendrick, G, Chen, G. 2009. The paleoceanography of the Leeuwin Current: implications for a future world. Journal of the Royal Society of Western Australia 92:3751.Google Scholar
Yu, K, Hua, Q, Zhao, J-X, Hodge, E, Fink, D, Barbetti, M. 2010. Holocene marine 14C reservoir age variability: evidence from 230Th-dated corals from South China Sea. Paleoceanography 25: PA3205, doi::10.1029/2009PA001831.CrossRefGoogle Scholar
Zhu, ZR, Wyrwoll, KH, Collins, LB, Chen, JH, Wasserburg, GJ, Eisenhauer, A. 1993. High-precision U-series dating of Last Interglacial events by mass spectrometry: Houtman Abrolhos Islands, western Australia. Earth and Planetary Science Letters 118(1–4):281–9.CrossRefGoogle Scholar