Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T15:14:10.672Z Has data issue: false hasContentIssue false

LIQUID SCINTILLATION COUNTING (LSC)—PAST, PRESENT, AND FUTURE

Published online by Cambridge University Press:  20 October 2021

Alan G Hogg*
Affiliation:
School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
Gordon T Cook*
Affiliation:
Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, Scotland
*
*Corresponding authors. Emails: [email protected]; [email protected]
*Corresponding authors. Emails: [email protected]; [email protected]

Abstract

Radiocarbon (14C) dating by liquid scintillation (LS) spectroscopy (also known as LS counting or LSC) provides an alternate method of 14C analysis where accelerator mass spectrometry (AMS) analysis is less desirable. The past, present, and future applications of the method are discussed.

Type
Review Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R, Cook, G 1991. Scintillation cocktail optimization for 14C dating using the Packard 2000CA/LL and 2260XL. Radiocarbon 33(1):17.CrossRefGoogle Scholar
Barker, H. 1953. Radiocarbon dating: large-scale preparation of acetylene from organic material. Nature 172:631632.CrossRefGoogle Scholar
Bronk Ramsey, C, Heaton, T, Schlolaut, G, Staff, R, Bryant, C, Brauer, A, Lamb, H, Marshall, M, Nakagawa, T. 2020. Reanalysis of the atmospheric radiocarbon calibration record from Lake Suigetsu. Radiocarbon 62(4):989999.CrossRefGoogle Scholar
Broser, V, Kallmann, H 1947. Uber die Anregung von Leuchtstoffen durch schnelle Korpuskularteilchen I. Z Naturforschg 2a:439440.Google Scholar
Butterfield, D, Polach, H 1983. Effects of vial holder materials and design on low-level 14C scintillation counting. In: McQuarrie, SA, Ediss, C, Wiebe, LI, editors. Advances in scintillation counting. University of Alberta Press. p. 468477.Google Scholar
Cheng, H, Edwards, RL, Southon, J, Matsumoto, K, Feinberg, JM, Sinha, A, Zhou, W, Li, H, Li, X, Xu, Y, Chen, S 2018. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362(6420):12931297.CrossRefGoogle ScholarPubMed
Cook, G, Harkness, D, Anderson, R 1989. Performance of the Packard 2000CA/LL and 2250CA/XL liquid scintillation counters for 14C dating. Radiocarbon 31(3):352358.CrossRefGoogle Scholar
Cooper, A, Turney, C, Palmer, J, Hogg, A, McGlone, M, Wilmshurst, J, Lorrey, A, Heaton, T, Russell, J, McCracken, K, Anet, J, Rozanov, E, Friedel, M, Suter, I, Peter, T, Muscheler, R, Adolphi, F, Dosseto, A, Faith, J, Fenwick, P, Fogwill, C, Hughen, K, Lipson, M, Liu, J, Nowaczyk, N, Rainsley, E, Bronk Ramsey, C, Sebastianelli, P, Souilmi, Y, Stevenson, J, Thomas, Z, Tobler, R, Zech, R. 2021. A global environmental crisis 42,000 years ago. Science 371(6531):811818.CrossRefGoogle ScholarPubMed
Devine, J, Haas, H. 1987. Scintillation counter performance at the SMU Radiocarbon Laboratory. Radiocarbon 29(1):1217.CrossRefGoogle Scholar
Gupta, SK, Polach, HA. 1985. Radiocarbon dating practices at ANU. Canberra: Australian National University.Google Scholar
Haas, H. 1979. Specific problems with liquid scintillation counting of small benzene volumes and background count rate estimation. In: Berger, R, Suess, HE, editors. Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla, 1976. p. 246255.CrossRefGoogle Scholar
Hiebert, R, Watts, R. 1953. Fast-coincidence circuit for H-3 and C-14 measurements. Nucleonics 11(12):3841.Google Scholar
Hogg, A. 1993. Performance and design of 0.3 ml to 10 ml synthetic silica liquid scintillation vials. In: Noakes, JE, Polach, HA, Schonhofer, F, editors. Liquid Scintillation Spectrometry 1992. Tucson (AZ): Radiocarbon. p. 135142.Google Scholar
Hogg, A, Noakes, J. 1992. Evaluation of high-purity synthetic silica vials in active and passive vial holders for liquid scintillation counting of benzene. Radiocarbon 34(3):394401.CrossRefGoogle Scholar
Hogg, A, Polach, H, Robertson, S, Noakes, J. 1989. Application of high purity synthetic quartz vials to liquid scintillation low-level 14C counting of benzene. In: Ross, H, Noakes, JE, Spaulding, JD, editors. Liquid scintillation counting and organic scintillators. Lewis Publishers. p. 123131.Google Scholar
Horrocks, D. 1985. Studies of background sources in liquid scintillation counting. International Journal of Applied Radiation and Isotopes 36:609617.CrossRefGoogle Scholar
Kojola, H, Polach, H, Nurmi, J, Oikari, T, Soini, E. 1984. High resolution low-level liquid scintillation β-spectrometer. The International Journal of Applied Radiation and Isotopes 35(10):949952.CrossRefGoogle Scholar
Lorrey, A, Boswijk, G, Hogg, A, Palmer, J, Turney, C, Fowler, A, Ogden, J, Woolley, J. 2018. The scientific value and potential of New Zealand swamp kauri. Quaternary Science Reviews 183:124139.CrossRefGoogle Scholar
Noakes, J, Crook, M, Johnson, P. 1977. Considerations for achieving low level radioactivity measurements with liquid scintillation counters. Liquid scintillation counting. London: Heyden & Sons. p. 189206.Google Scholar
Noakes, J, Valenta, R. 1996. The role of Bi4Ge3O12 as an auxiliary scintillator for α/β/γ liquid scintillation counting and low level counting. In: Cook, GT, Harkness, DD, MacKenzie, AB, Miller, BF, Scott, EM, editors. Advances in liquid scintillation spectrometry, 1994. Tucson (AZ): Radiocarbon. p. 283292.Google Scholar
Noakes, J, Valenta, R. 1989. Low background liquid scintillation counting using an active sample holder and pulse discrimination electronics. Radiocarbon 31(3):332341.CrossRefGoogle Scholar
Ogden, J, Newnham, R, Palmer, J, Serra, R, Mitchell, N. 1993. Climatic implications of macro-and microfossil assemblages from Late Pleistocene deposits in northern New Zealand. Quaternary Research 39(1):107119.CrossRefGoogle Scholar
Polach, H. 1987. Evaluation and status of liquid scintillation counting for radiocarbon dating. Radiocarbon 29(1):111.CrossRefGoogle Scholar
Polach, H, Calf, G, Harkness, DD, Hogg, A, Kaihola, L, Robertson, S. 1988. Performance of new technology liquid scintillation counters for 14C dating. Nuclear Geophysics 2(2):7579.Google Scholar
Polach, H, Gower, J, Kojola, H, Heinonen, A. 1983. An ideal vial and cocktail for low-level scintillation counting. Advances in scintillation counting 1983. Alberta, Canada: University of Alberta.Google Scholar
Polach, H, Stipp, J. 1967. Improved synthesis techniques for methane and benzene radiocarbon dating. The International Journal of Applied Radiation and Isotopes 18(6):359364.CrossRefGoogle Scholar
Valenta, R. 1986. Patent. Reduced background scintillation counting. U.S. Patent No. 4,651,006.Google Scholar
Valenta, R, Noakes, J. 1989. Liquid scintillation measurement system with active guard shield. U.S. Patent No. 4,833,326.Google Scholar