Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:45:34.684Z Has data issue: false hasContentIssue false

Laboratory Intercomparison of Pleistocene Bone Radiocarbon Dating Protocols

Published online by Cambridge University Press:  21 June 2017

Matthias Huels*
Affiliation:
Leibniz-Laboratory for Radiometric Dating and Isotope Research, Max-Eyth-Str.11-13, 24118 Kiel, Germany
Johannes van der Plicht
Affiliation:
Center for Isotope Research, University of Groningen, the Netherlands
Fiona Brock
Affiliation:
Research Laboratory for Archaeology and the History of Art, Oxford, United Kingdom Cranfield Forensic Institute, Cranfield University, Defence Academy of the United Kingdom, SN6 8LA, United Kingdom
Simon Matzerath
Affiliation:
LVR-LandesMuseum Bonn, Germany University of Tübingen, Institut für Ur- und Frühgeschichte und Archäologie des Mittelalters, Germany
David Chivall
Affiliation:
Research Laboratory for Archaeology and the History of Art, Oxford, United Kingdom
*
*Corresponding author. Email: [email protected].

Abstract

Since its invention in the late 1940s, radiocarbon (14C) dating has become an important tool for absolute dating. A prerequisite for the acceptance of this method is consistency between, and compatibility of, 14C dates from different laboratories. To meet these requirements, international laboratory intercomparison studies with different sample materials are frequently performed (e.g. TIRI, FIRI, VIRI and, most recently, SIRI).Intercomparison is especially relevant and difficult for samples close to the dating limit of ~50 kBP, not least for bone samples. A 14C intercomparison study between the Leibniz-Laboratory in Kiel (Germany), the Center for Isotope Research (CIO) in Groningen (the Netherlands), and the Oxford Radiocarbon Accelerator Unit (ORAU, United Kingdom) was performed on three Pleistocene (MIS3) mammal bone samples from the Brick Quarry site Coenen (BQC) in Germany. The comparison of individually prepared and measured bone collagen 14C activities, results from shared collagen measurements, and respective background signatures and correction points to the latter as the main factor responsible for observed differences in final given radiocarbon estimates.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

References

REFERENCES

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B 123(1–4):221225.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004a. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.Google Scholar
Bronk Ramsey, C, Higham, T, Leach, P. 2004b. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.Google Scholar
Dee, M, Ramsey, CB. 2000. Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research B 172:449453.Google Scholar
Dobberstein, RC, Collins, MJ, Craig, OE, Taylor, G, Penkman, KEH, Ritz-Timme, S. 2009. Archaeological collagen: Why worry about collagen diagenesis? Archaeological and Anthropological Sciences 1:3142.Google Scholar
Grootes, PM, Nadeau, M-J, Rieck, A. 2004. 14C AMS at the Leibniz-Labor: radiocarbon dating and isotope research. Nuclear Instruments and Methods in Physics Research B 223–224:5561.Google Scholar
Higham, T, Bronk Ramsey, C, Karavanić, I, Smith, FH, Trinkaus, E. 2006. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proceedings of the National Academy of Science of the United States of America 103(3):553557.Google Scholar
Huels, CM, Grootes, PM, Nadeau, M-J. 2007. How clean is ultrafiltration cleaning of bone collagen? Radiocarbon 49(2):193200.Google Scholar
Huels, CM, Grootes, PM, Nadeau, M-J. 2009. Ultrafiltration: boon or bane? Radiocarbon 51(2):613625.Google Scholar
Huels, CM, Rakowski, AZ, Nadeau, M-J, Grootes, PM. 2014. Background correction for organic samples in Leibniz-Laboratory. Poster presentation at AMS-13 conference, 25–29 August 2014, Aix-en-Provence, France.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241242.CrossRefGoogle ScholarPubMed
Lehmkuhl, F, Zens, J, Krauß, L, Schulte, P, Kels, H. 2016. Loess-paleosol sequences at the northern European loess belt in Germany: distribution, geomorphology and stratigraphy. Quaternary Science Reviews 153:1130.Google Scholar
Matzerath, S, Turner, E, Fischer, P, van der Plicht, J. 2012. Radiokohlenstoffdatierte Megafauna aus dem Interpleniglazial der westlichen Niederrheinischen Bucht, Deutschland – Die Funde aus dem Löss der Ziegeleigrube Coenen (Kreis Düren). [Radiocarbon-dated megafauna from the Interpleniglacial in the western Lower Rhine Embayment, Germany – The findings from the loess deposits in the Coenen brick quarry (District of Düren).] Quartär 59:4766 In German.Google Scholar
Mook, WG, Streurman, HJ. 1983. Physical and chemical aspects of radiocarbon dating. PACT 8:3155.Google Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS Facility. Radiocarbon 40(1):239245.Google Scholar
Nadeau, M-J, Schleicher, M, Grootes, PM, Erlenkeuser, H, Gottdang, A, Mous, DJW, Sarnthein, M, Willkomm, H. 1997. The Leibniz-Labor AMS facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B 123:2230.Google Scholar
Nadeau, M-J, Grootes, PM. 2013. Calculation of the compounded uncertainty of 14C AMS measurements. Nuclear Instruments and Methods in Physics Research B 294:420425.Google Scholar
Olsson, IU. 1989. The 14C method, its possibilities and some pitfalls. PACT 24:161e177.Google Scholar
Pasteris, JD, Wopenka, B, Valsami-Jones, E. 2008. Bone and tooth mineralization: why apatite? Elements 4:97104.Google Scholar
Rakowski, AZ, Huels, CM, Schneider, R, Dreves, A, Meadows, J. 2014. Data analysis at Leibniz-Laboratory Kiel: from AMS measurement to radiocarbon age. Poster presentation at AMS-13 conference, 25–29 August 2014, Aix-en-Provence, France.Google Scholar
van der Plicht, J, Hogg, A. 2006. A note on reporting radiocarbon. Quaternary Geochronology 1:237240.Google Scholar
van der Plicht, J, Palstra, SWL. 2014. Radiocarbon and mammoth bones: What’s in a date. Quaternary International 406(B):246251.Google Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for paleodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.Google Scholar
Wißing, C, Matzerath, S, Turner, E, Bocherens, H. 2015. Paleoecological and climatic implications of stable isotope results from late Pleistocene bone collagen, Ziegeleigrube Coenen, Germany. Quaternary Research 84:96105.Google Scholar
Wood, RE, Ramsey, CB, Higham, TFG. 2010. Refining background corrections for radiocarbon dating of bone collagen at ORAU. Radiocarbon 52(2):600611.CrossRefGoogle Scholar