Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:01:33.006Z Has data issue: false hasContentIssue false

Iron Bar Trade between the Mediterranean and Gaul in the Roman Period: 14C Dating of Products from Shipwrecks Discovered off the Coast of Saintes-Maries-de-la-Mer (Bouches-du-Rhône, France)

Published online by Cambridge University Press:  03 January 2017

Emmanuelle Delqué-Količ*
Affiliation:
Laboratoire de Mesure du Carbone 14 LMC14/LSCE, CEA de Saclay, Bât. 450 porte 4E, 91191 Gif sur Yvette cedex, France
Stéphanie Leroy
Affiliation:
Laboratoire Archéomatériaux et Prévision de l’Altération LMC-IRAMAT UMR5060/NIMBE UMR3685, CEA Saclay - Bât. 637, 91191 Gif-sur-Yvette cedex, France
Gaspard Pagès
Affiliation:
Archéologie et Sciences de l’Antiquité ArScAn UMR7041, Maison Archéologie & Ethnologie, René-Ginouvès, 21, allée de l’Université, 92023 Nanterre Cedex, France
Julie Leboyer
Affiliation:
5, chemin entre les murs, 17290 Chambon, France
*
*Corresponding author. Email: [email protected].

Abstract

The large number of iron-laden wrecked ships discovered off Saintes-Maries-de-la-Mer (south of France) since the 1990s has enriched our knowledge of both maritime trade in the Mediterranean and the ferrous bars used during antiquity. This exceptional corpus has spawned numerous studies in the fields of archaeology, history, and archaeometallurgy, but, despite a relatively well-documented context, the chronology of wrecks is still to be clarified. Until recently, the chronology of the corpus was mainly supported by the archaeological remains found in the cargo of the wrecks, resulting in a chronological range from the 1st century BC to the 1st century AD. However, the 14C dating of an iron bar from Saintes-Maries-de-la-Mer, older by more than a century from the expected chronological range, has revived discussions about the chronology of all the wrecks. Thanks to the development of a new protocol for dating ferrous alloys, based on an extensive study of the ferrous material, 34 samples of iron extracted from 13 ferrous bars constituting the cargo of seven ships could be 14C dated. The 14C results and the archaeological and historical data were subjected to Bayesian analysis to build a chronological framework for the antique shipwrecks of Saintes-Maries-de-la-Mer. It appears that all these ships could belong to a larger phase than the one deduced from archaeological remains alone. Consequently, this study helps to support a new vision of the trade between the northeastern Mediterranean and western Europe.

Type
Puzzles in Archaeological Chronologies
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

References

REFERENCES

Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291299.Google Scholar
Coustures, MP, Béziat, D, Tollon, F, Domergue, C, Long, L, Rebiscoul, A. 2003. The use of trace element analysis of entrapped slag inclusions to establish ore - bar iron links: examples from two galo-roman iron-making sites in France (Les Martys, Montagne noire, and les Ferrys, Loiret). Archaeometry 45(4):599613.Google Scholar
Coustures, M-P, Rico, C, Béziat, D, Djaoui, D, Long, L, Domergue, C, Tollon, F. 2006. La provenance des barres de fer romaines des Saintes-Maries-de-la-Mer (Bouches-du-Rhône). Gallia 63:243261.Google Scholar
Delqué-Količ, E, Comby-Zerbino, C, Ferkane, S, Moreau, C, Dumoulin, J-P, Caffy, I, Souprayen, C, Quilès, A, Bavay, D, Hain, S, Setti, V. 2013. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France. Nuclear Instruments and Methods in Physics Research B 294:189193.Google Scholar
Dillmann, P, L’Héritier, M. 2007. Slag inclusion analyses for studding ferrous alloys employed in French medieval building: supply of materials and diffusion of smelting processes. Journal of Archaeological Science 34(11):18101823.Google Scholar
Domergue, C. 2004. Les mines et la production des métaux dans le monde méditerranéen au Ier millénaire avant notre ère. Du producteur au consommateur. In: Lehoërff A, editor. L’artisanat métallurgique dans les sociétés anciennes en méditerranée occidentale: techniques, lieux et formes de production. Collection de l’Ecole Française de Rome, n°332. Rome: Ecole Française de Rome. p 129159.Google Scholar
Domergue, C, Benquet, L, Decombeix, P-M, Fabre, J-M, Gorgues, A, Rico, C, Tollon, F. 2003. La Guerre des Gaules et les débuts de la sidérurgie romaine en Montagne Noire. Pallas, Revue d’études Antiques 63:241247.Google Scholar
Domergue, C, Serneels, V, Cauuet, B, Pailler, J-M, Orzechowski, S. 2006. Mines et métallurgies en Gaule à la fin de l'Âge du Fer et à l'époque romaine. In: Paunier D, editor. Celtes et Gaulois, l’Archéologie face à l’histoire, 5: la romanisation et la question de l’héritage celtique. Actes de la table ronde de Lausanne, 17–18 juin 2005. Bibracte, n°12/5. Glux-en-Glenne: Bibracte, Centre archéologique européen. p 131162.Google Scholar
Doyen, E, Vannière, B, Berger, J-F, Arnaud, F, Tachikawa, K, Bard, E. 2013. Land-use changes and environmental dynamics in the upper Rhone valley since Neolithic times inferred from sediment in Lake Moras. The Holocene 23(7):961973.Google Scholar
Dumoulin, J-P, Comby-Zerbino, C, Delqué-Količ, E, Moreau, C, Berthier, B, Beck, L, Caffy, I, Hain, S, Mollet, B, Perron, M, Setti, V, Sieudat, M, Souprayen, C, Tellier, B. 2016. Status report on samples preparation protocols developed in the LMC14 Laboratoy, Saclay, France: from sample collection on site to 14C AMS measurement. Radiocarbon, Forthcoming.Google Scholar
Fiori, P. 1973. Gisement de blocs de fer au Cap Gros à Antibes. Cahier d’archéologie subaquatique II:9596.Google Scholar
Fluzin, P. 1983. Notions élémentaires de sidérurgie. In: Echard N, editor. Métallurgies Africaines, nouvelles contributions. Paris: Mémoire de la Société des Africanistes, n°9. p 1344.Google Scholar
Hüls, CM, Grootes, PM, Nadeau, M-J, Bruhn, F, Hasselberg, P, Erlenkeuser, H. 2004. AMS radiocarbon dating of iron artefacts. Nuclear Instruments and Methods in Physics Research B 223–224:709715.Google Scholar
Izquierdo, P. 1987. Algunes observacions sobre l’ancoratge de “Les Sorres” al delta del riu Llobregat, in El VI a l’antiguitat. Economia, produccio i comerc al medterrani occidental. Actes du colloques d’Arqueologia romona (Badalona, décembre 1985). Monografies Badalonines, n°9. Badalona: Ed du Museu de Badalona. p 133–9.Google Scholar
Izquierdo i Tugas, P. 1992. L’ancoratge antic de les Sorres: aportacions a la historia economica de la coste del Llobregat. Fonaments 8:5378.Google Scholar
Janin, T, Chardenon, N. 1998. Les premiers objets en fer en Languedoc occidental et en Roussillon (VIIIe s. av. n. è.): types, chronologie et origine. In: Feugère M, Serneels V, editors. Recherches sur l'économie du fer en Méditerranée nord-occidentale. Monographies instrumentum n°4. Montagnac: Monique Mergoil. p 5664.Google Scholar
Joncheray, J-P. 1994. L'épave Dramont C. Cahier d’archéologie subaquatique 12:551.Google Scholar
Leroy, S, Cohen, SX, Verna, C, Gratuze, B, Téreygeol, F, Fluzin, P, Bertrand, L, Dillmann, P. 2012. The medieval iron market in Ariège (France). Multidisciplinary analytical approach and multivariate analyses. Journal of Archaeological Science 39(4):10801093.Google Scholar
Leroy, S, L’Héritier, M, Delqué-Kolic, E, Dumoulin, J-P, Moreau, C, Dillmann, P. 2015a. Consolidation or initial design? Radiocarbon dating of ancient iron alloys sheds light on the reinforcements of French Gothic Cathedrals. Journal of Archaeological Science 53:190201.Google Scholar
Leroy, S, Hendrickson, M, Delqué-Kolic, E, Vega, E, Dillmann, P. 2015b. First direct dating for the construction and modification of the Baphuon Temple Mountain in Angkor, Cambodia. PLoS ONE 10(11):e0141052.Google Scholar
Long, L, Rico, C, Domergue, C. 2002. Les épaves antiques de Camargue et le commerce maritime du fer en Méditerranée nord-occidentale (Ier siècle avant J.-C. - Ier siècle après J.-C.). L’Africa Romana 14:161188.Google Scholar
Long, L, Djaoui, D, Rico, C. 2005. Lingots et barres de fer: vers une typologie plus complète. In: Bilan Scientifique du Département des Recherches Archéologiques Subaquatiques et Sous-Marines 2003. Paris: Direction du Patrimoine. Sous-direction de l’Archéologie. Ministère de la Culture et de la Communication. p 6668.Google Scholar
Pagès, G. 2010. Artisanat et économie du fer en France méditerranéenne de l’Antiquité au début du Moyen Âge: une approche interdisciplinaire. Montagnac: Monique Mergoil.Google Scholar
Pagès, G. 2014. Productions, commerces et consommation du fer dans le sud de la Gaule de la Protohistoire à la domination romaine. Gallia 71(2):4767.Google Scholar
Pagès, G, Long, L, Fluzin, P, Dillmann, P. 2008. Réseaux de production et standards de commercialisation du fer antique en Méditerranée : les demi-produits des épaves romaines des Saintes-Maries-de-la-Mer (Bouches-du-Rhône, France). Revue Archéologique de Narbonnaise 41:261283.Google Scholar
Pagès, G, Dillmann, P, Fluzin, P, Long, L. 2011. A study of the Roman iron bars of Saintes-Maries-de-la-Mer (Bouches-du-Rhône, France). A proposal for a comprehensive metallographic approach. Journal of Archaeological Science 38(6):12341252.CrossRefGoogle Scholar
Pleiner, R. 2006. Iron in archaeology. In: Early European Blacksmiths. Prague: Archeologicky ustav AV CR. 384 p.Google Scholar
Ramos, JE, Wagner, J, Fernandez, A. 1984. El yacimiento arqueologico submarino de Ben-Afeli estudio de los materiales (Almazora, Castellon). Cuadernos de Prehistoria y Arqueologia Castellonenses 10:121158.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Serneels, V. 1998. La chaîne opératoire de la sidérurgie ancienne. In: Feugère M, Serneels V, editors. Recherches sur l'économie du fer en Méditerranée nord-occidentale. Montagnac: Monique Mergoil. p 744.Google Scholar
Tchernia, A. 1969. Epave métallique du Cap des Mèdes. Gallia 27(2):476478.Google Scholar
Tylecote, R-F. 1987. The Early History of Metallurgy in Europe. London: Longman. 391 p.Google Scholar