Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T11:40:59.841Z Has data issue: false hasContentIssue false

INFLUENCE OF AIR PARCELS FROM NORTHERN AND SOUTHERN HEMISPHERES ON RADIOCARBON-BASED INCA CHRONOLOGY

Published online by Cambridge University Press:  27 December 2022

Santiago Ancapichún
Affiliation:
Postgraduate School in Oceanography, Faculty of Natural and Oceanographic Sciences, Universidad de Concepción, Concepcion, Chile Centro de Investigación GAIA Antártica (CIGA), Universidad de Magallanes, Punta Arenas, Chile
Jacek Pawlyta
Affiliation:
AGH, University of Sciences and Technology, Kraków, Poland
Andrzej Z Rakowski*
Affiliation:
Silesian University of Technology, Gliwice, Poland
Dominika Sieczkowska
Affiliation:
Centre for Andean Studies at Cusco, University of Warsaw, Poland
*
*Corresponding author. Email: [email protected]

Abstract

The chronology of Machu Picchu was traditionally associated with the period attributed to the reign of Pachacuti Inca Yupanqui. Within the scheme of the so-called “historical chronology”, proposed by John H. Rowe in 1945, the ascension to power of Pachacuti Inca took place around 1438 CE, and the construction of Machu Picchu began by 1450–1460 CE. Several radiocarbon-dated samples may help to understand the chronology of the construction of llaqta of Machu Picchu, Chachabamba, and Choqesuysuy. However, there is a lack of consensus between different radiocarbon-based Inca chronologies because of the lack of information of which calibration curves to use: Northern Hemisphere (NH), Southern Hemisphere (SH), or a mixed calibration curve? Thus, the main goal of the present investigation is to develop a new methodological approach to reconstruct a radiocarbon-based Incan chronology, an approach based on the determination, through modeling, of the proportion of NH and SH air parcels arriving at three relevant Inca settlements. We found air parcel contributions from the NH and SH for Machu Picchu (51% NH and 49% SH), Chamical (29% NH and 71% SH), and Tiquischullpa (41% NH and 59% SH). Thereby, our investigation brings three proportions to mix NH and SH 14C curves, based on an empirical method and supported by a high-resolution paleoclimatic tracer, for Inca radiocarbon dating studies. Our study emphasizes that great attention should be paid when applying radiocarbon calibration to radiocarbon measurements of samples originating from regions under the influence of the atmospheric circulation-boundary between hemispheres.

Type
Conference Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 3rd Radiocarbon in the Environment Conference, Gliwice, Poland, 5–9 July 2021

References

REFERENCES

Ancapichún, S, De Pol-Holz, R, Christie, DA, Santos, GM, Collado-Fabbri, S, Garreaud, R, Lambert, F, Orfanoz-Cheuquelaf, A, Rojas, M, Southon, J, Turnbull, JC, Creasman, P. 2021. Radiocarbon bomb-peak signal in tree-rings from the tropical Andes register low latitude atmospheric dynamics in the Southern Hemisphere. Science of the Total Environment 774:145126. https://doi.org/10.1016/j.scitotenv.2021.145126.CrossRefGoogle Scholar
Bastante Abuhabda, JM, Sieczkowska, D, Deza, A. 2020. Investigaciones en el monumento arqueológico Chachabamba. In: Bastante Abuhabda JM, Fernando AV, editors. Machupicchu investigaciones interdisciplinarias. Vol. II. Lima.Google Scholar
Braziunas, T, Fung, I, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric, oceanic, and terrestrial reservoirs. Global Biogeochemical Cycles 9:565584. https://doi.org/10.1029/95gb01725.CrossRefGoogle Scholar
Bronk Ramsey, C, Lee, S. 2013. Recent and planned developments of the program OxCal. Radiocarbon 55(2):720730.Google Scholar
Burger, RL, Salazar, LC, Nesbitt, J, Washburn, E, Fehren-Schmitz, L. 2021 New AMS dates for Machu Picchu: results and implications. Antiquity 95(383):12651279. https://doi.org/10.15184/aqy.2021.99.CrossRefGoogle Scholar
Cabello Balboa, M. 1951 [1586]. Miscelánea antártica, una historia del Perú antiguo. Valcarcel LE, editor. Lima: Universidad Nacional Mayor de San Marcos, Instituto de Etnología.Google Scholar
Chavez Ballón, M. 1971. Cusco y Machu Picchu, Wayka. Revista del Departamento de Antropología de la Universidad del Cusco 4–5:14.Google Scholar
Culleton, BJ, Prufer, KM, Kennett, DJ. 2012. A Bayesian AMS 14C chronology of the Classic Maya Center of Uxbenká, Belize. Journal of Archaeological Science 39(5):15721586. doi: 10.1016/j.jas.2011.12.015.CrossRefGoogle Scholar
Draxler, R, Taylor, D. 1982. Horizontal dispersion parameters for long-range transport modelling. Journal of Applied Meterology 21(3):367–372. https://doi.org/10.1175/1520-0450(1982)021<0367:HDPFLR>2.0.CO;2.CrossRefGoogle Scholar
Draxler, R, Stunder, J. 1988. Modeling the CAPTEX vertical tracer concentration profiles. Journal of Applied Meterology 27:617625. https://doi.org/10.1175/15200450(1988)027<0617:MTCVTC>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Draxler, R, Hess, G. 1998. An overview of the HYSPLIT_4 modeling system for trajectories, dispersión, and deposition. Austrian Meteorological Magazine 47:295308. https://doi.org/10.1016/S1352-2310(97)00457-3.Google Scholar
Graven, H, Guilderson, T, Keeling, R. 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117:D02303. https://doi.org/10.1029/2011JD016535.Google Scholar
Heimann, M, Maier-Reimer, E. 1996. On the relations between the oceanic uptake of CO2 and its carbon isotopes. Global Biogeochemical Cycles 10:89110. https://doi.org/10.1029/95GB03191.CrossRefGoogle Scholar
Hogg, AG, Heaton, TJ, Hua, Q, Palmer, JG, Turney, CSM, Wacker, L. 2020. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759778. https://doi.org/10.1017/RDC.2020.59.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):12731298.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, A. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):20592072. https://doi.org/10.2458/azu_js_rc.v55i2.16177.CrossRefGoogle Scholar
Hua, Q, Turnbull, JC, Santos, GM, Rakowski, AZ, Ancapichun, S, de Pol-Holz, R, Hammer, S, Lehman, SJ, Levin, I, Miller, JB, Palmer, JG, Turney, CSM. 2022. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64(4):723–745. https://doi.org/10.1017/RDC.2021.95.CrossRefGoogle Scholar
Huber, PJ. 2011. The astronomical basis of Egyptian chronology of the second millennium BC. Journal of Egyptian History 4(2):172227. doi: 10.1163/187416611x618721.CrossRefGoogle Scholar
Huster, AC, Smith, ME. 2015. A new archaeological chronology for Aztec-Period Calixtlahuaca, Mexico. Latin American Antiquity 26(01):325. doi: 10.7183/1045-6635.26.1.3.CrossRefGoogle Scholar
IPCC. 2019. Special report on the ocean and cryosphere in a changing.Google Scholar
Kalnay, E, Kanamitsu, M, Kistler, R, Collins, W, Deaven, D, Gandin, L, et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77:437471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Key, R, Kozyr, A, Sabine, C, Lee, K, Wanninkhof, R, Bulliste, J, et al. 2004. A global ocean carbon climatology: results from global data analysis project (GLODAP). Global Biogeochemical Cycles 18(4):GB4031. https://doi.org/10/1029/2004gb002247.CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Francey, R, Gomez-Pelaez, A, Steele, L, et al. 2010. Observations and modeling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus 62(1):2646. https://doi.org/10.1111/j.1600-0889.2009.00446.x.CrossRefGoogle Scholar
Levin, I, Hammer, S, Kromer, B, Preunkert, S, Weller, R, Worthy, D. 2021. Radiocarbon in global tropospheric carbon dioxide. Radiocarbon 64(4):781–791. https://doi.org/10.1017/RDC.2021.102.Google Scholar
Manning, SW, Griggs, CB, Lorentzen, B, Barjamovic, G, Bronk Ramsey, C, Kromer, B, Wild, EM. 2016. Integrated tree-ring-radiocarbon high-resolution timeframe to resolve earlier second millennium BCE, Mesopotamian chronology. PLOS ONE 11(7):e0157144. doi: 10.1371/journal.pone.0157144.CrossRefGoogle ScholarPubMed
Manning, S, Barjamovic, G, Lorentzen, B. 2017. The course of 14C dating does not run smooth: Tree-rings, radiocarbon, and potential impacts of a calibration curve wiggle on dating Mesopotamian chronology. Journal of Ancient Egyptian Interconnections 13:7081.Google Scholar
Marland, G, Boden, T, Andres, R. 2006. Global, regional and national CO2 emissions. In: Trends: a compendium of data on global change Carbon Dioxide information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN.Google Scholar
Marsh, E, Bruno, M, Fritz, S, Baker, P, Capriles, J, Hastorf, C. 2018. IntCal, SHCal, or a mixed curve? Choosing a 14C calibration curve for archaeological and paleoenvironmental records from tropical South America. Radiocarbon 60(3):925940. doi: 10.1017/RDC.2018.16.CrossRefGoogle Scholar
Marsh, E, Kidd, R, Ogburn, D, Duran, V. 2017. Dating the expansion of the Inca Empire: Bayesian model from Ecuador and Argentina. Radiocarbon 59(1):117140. doi: 10.1017/RDC.2016.118.CrossRefGoogle Scholar
Masarik, J, Beer, J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the earth’s atmosphere. Journal of Geophysical Research-Atmospheres 104:1209912111.CrossRefGoogle Scholar
Naegler, T, Levin, I. 2009. Observation-based global biospheric excess radiocarbon inventory 1963-2005. Journal of Geophysical Research 114:D17302. https://doi.org/10.1029/2008JD011100.CrossRefGoogle Scholar
Ogburn, D. 2012. Reconceiving the chronology of Inca Imperial expansion. Radiocarbon 54(2):219237.CrossRefGoogle Scholar
Pärssinen, M, Siiriäinen, A. 1997. Inca-style ceramics and their chronological relationship to the Inka expansion in the southern lake Titicaca area (Bolivia). Latin American Antiquity 8(3):255271.Google Scholar
Reimer, P, Austin, W, Bard, E, Bayliss, A, Blackwell, P, Bronk Ramsey, C, Talamo, S. 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62(4):725757. doi: 10.1017/RDC.2020.41.CrossRefGoogle Scholar
Rodgers, K, Mikaloff-Fletcher, S, Bianchi, D, Beautien, C, Galbraith, E, Gnanadesikan, A, Hogg, A, Iudicone, D, Lintner, B, Naegler, T, Reimer, P, Sarmiento, J, Slatter, R. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Climate of the Past 7:11231138.CrossRefGoogle Scholar
Rowe, JH. 1945. Absolute chronology in the Andean area. American Antiquity 10(3):265284.CrossRefGoogle Scholar
Rowe, JH. 1990. Machu-Picchu a la luz en documentos del siglo XVI. Historica 14(1):139–154.Google Scholar
Rowe, JH. 2003 [1986]. Machu Picchu a la luz de documentos del siglo XVI. In: Rowe JH, editor. Los Incas del Cuzco. Siglos XVI–XVII–XVIII. INC–Región Cusco. p. 117–126.Google Scholar
Salazar, LC. 2004. Machu Picchu: mysterious royal estate in the cloud forest. In: Burger, RL, Salazar, LC, editors. Machu Picchu: unveiling the mystery of the Incas. Yale University Press. p. 2148.Google Scholar
Spence, K. 2000. Ancient Egyptian chronology and the astronomical orientation of pyramids. Nature 408(6810):320324. doi: 10.1038/35042510.CrossRefGoogle ScholarPubMed
Stein, A, Draxler, R, Rolph, G, Stunder, B, Cohen, M, Ngan, F. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96:20592077. https://doi.org/10.1175/BAMS-D-14-00110.1.CrossRefGoogle Scholar
Thompson, L, Mosley-Thompson, E, Davis, M, Zagorodnov, V, Howat, I, Mikhalenko, V, Lin, P. 2013. Annually resolved ice core records of tropical climate variability over the past 1800 years. Science 340:945950. https://doi.org/10.1126/science.1234210.CrossRefGoogle ScholarPubMed
Vuille, M, Burns, S, Taylor, B, Cruz, F, Bird, B, Abbott, M, et al. 2012. A review of the South American monsoon history as recorded in stable isotopic proxies over the past two millennia. Climate of the Past 8:13091321. https://doi.org/10.5194/cp-8-1309-2012.CrossRefGoogle Scholar
Weaver, A, Marotzke, J, Cummins, P, Sarachik, E. 1993. Stability and variability of the thermohaline circulation. Journal of Physical Oceanography 23(1):3960. doi: 10.1175/1520-0485(1993)023<0039:savott>2.0.co.2.0.CO;2>CrossRefGoogle Scholar
Willis, EH, Tauber, H, Münnich, KO. 1960. Variations in the atmospheric radiocarbon concentration over the past 1300 years. Radiocarbon 2:14.Google Scholar
Ziółkowski, M, Bastante Abuhadba, J, Hogg, A, Sieczkowska, D, Rakowski, A, Pawlyta, J, Manning, S. 2020. When did the Incas build Machu Picchu and its satellite sites? New approaches based on radiocarbon dating. Radiocarbon 63(4):1133–1148. doi: 10.1017/RDC.2020.79.Google Scholar
Supplementary material: File

Ancapichún et al. supplementary material

Ancapichún et al. supplementary material

Download Ancapichún et al. supplementary material(File)
File 966 KB