Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T03:25:52.190Z Has data issue: false hasContentIssue false

HOLOCENE EVOLUTION OF A WAVE-DOMINATED BARRIER-LAGOON SYSTEM IN RIO DE JANEIRO, BRAZIL

Published online by Cambridge University Press:  22 July 2020

Rafael Cuellar de Oliveira e Silva*
Affiliation:
Laboratório de Geologia Marinha/LAGEMAR, Programa de Pós-Graduação em Dinâmica dos Oceanos e da Terra, Departamento de Geologia, Universidade Federal Fluminense, Av. Gen. Milton Tavares de Souza s/n, Campus da Praia Vermelha – Gragoatá, 24210-346Niterói, RJ, Brazil
Gilberto Tavares de Macedo Dias
Affiliation:
Laboratório de Geologia Marinha/LAGEMAR, Programa de Pós-Graduação em Dinâmica dos Oceanos e da Terra, Departamento de Geologia, Universidade Federal Fluminense, Av. Gen. Milton Tavares de Souza s/n, Campus da Praia Vermelha – Gragoatá, 24210-346Niterói, RJ, Brazil
Rodrigo Coutinho Abuchacra
Affiliation:
Programa de Pós-Graduação em Geografia, Departamento de Geografia, Universidade do Estado do Rio de Janeiro (FFP), Rua Dr. Francisco Portela, 1470 – Patronato, 24435-005São Gonçalo, RJ, Brazil
Sérgio Cadena de Vasconcelos
Affiliation:
Programa de Pós-Graduação em Geografia, Departamento de Geografia e Meio Ambiente, Núcleo de Estudos em Ambientes Costeiros/NEAC, PUC-Rio, Rua Marquês de São Vicente, 225 – Gávea, 22453-900Rio de Janeiro, RJ, Brazil
Kita Chaves Damasio Macario
Affiliation:
Laboratório de Radiocarbono/LAC-UFF, Departamento de Física, Universidade Federal Fluminense, Av. Gen. Milton Tavares de Souza s/n, Campus da Praia Vermelha – Gragoatá, 24210-346Niterói, RJ, Brazil
Estefan Monteiro da Fonseca
Affiliation:
Laboratório de Geologia Marinha/LAGEMAR, Programa de Pós-Graduação em Dinâmica dos Oceanos e da Terra, Departamento de Geologia, Universidade Federal Fluminense, Av. Gen. Milton Tavares de Souza s/n, Campus da Praia Vermelha – Gragoatá, 24210-346Niterói, RJ, Brazil
*
*Corresponding author. Email: [email protected].

Abstract

In a wave-dominated coast, most of the Jacarepaguá coastal plain is occupied by buildings. During a new construction in this region at Barra da Tijuca, the subsurface area was excavated, exposing its quartzose sand nature, with a high mollusk shell concentration and in situ echinoderms at 10 m depth. The possibility to access this area encouraged us to investigate the evolution of the coastal plain. A 7.84-m-long core was recovered by percussion drilling. Stratigraphic, grain size, and geochemical analysis were undertaken. Three carbonate samples were dated by radiocarbon accelerator mass spectrometry (14C AMS). The revised sea-level variation curve revealed that the last postglacial marine transgression reached the present mean sea-level at 7945–7500 cal BP. The sandy deposit bottom was an ancient shoreface, with in situ echinoderms buried at 7770–7540 cal BP by the Pleistocene inner barrier reworking due to the last marine transgression. The Holocene outer barrier-lagoon and its flood tidal delta were formed from 5440–5070 cal BP. Mid-Holocene marine regression allowed the outer barrier progradation and the lagoon shallowing/infill. This paper confirms prior models proposed by other researchers for the Rio de Janeiro central coast and shows its similarity with the New South Wales coast, Australia.

Type
Conference Paper
Copyright
© 2020 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 1st Latin American Radiocarbon Conference, Rio de Janeiro, 29 Jul.–2 Aug. 2019

References

REFERENCES

Alves, E, Macario, K, Souza, R, Pimenta, A, Douka, K, Oliveira, F, Chanca, I, Angulo, R. 2015. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quaternary Geochronology 29:3035. doi: 10.1016/j.quageo.2015.05.006.CrossRefGoogle Scholar
Angulo, RJ, Lessa, GC. 1997. The Brazilian sea-level curves: a critical review with emphasis on the curves from Paranaguá and Cananéia regions. Marine Geology 140:141166.CrossRefGoogle Scholar
Angulo, RJ, Lessa, GC, Souza, MC. 2006. A critical review of mid to late Holocene sea-level fluctuations on the eastern Brazilian coastline. Quaternary Science Reviews 25:486506.CrossRefGoogle Scholar
Angulo, RJ, Giannini, PCF, De Souza, MC, Lessa, GC. 2016. Holocene paleo-sea-level changes along the coast of Rio de Janeiro, southern Brazil: Comment on Castro et al. (2014). Anais da Academia Brasileira de Ciencias 88(4):21052111.CrossRefGoogle Scholar
Blott, SJ, Pye, K. 2001. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Process. Landforms 26:12371248.CrossRefGoogle Scholar
Blott, SJ, Pye, K. 2008. Particle shape: a review and new methods of characterization and classification. Sedimentology 55:3163.Google Scholar
Bronk Ramsey, C. 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2):18091833.CrossRefGoogle Scholar
Cherkinsky, A, Culp, RA, Dvoracek, DK, Noakes, JE. 2010. Status of the AMS facility at the University of Georgia. Nuclear Instruments and Methods in Physics Research B 268(7–8):867870.CrossRefGoogle Scholar
Dalrymple, RW, Zaitlin, BA, Boyd, R. 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Petrology 62(6):11301146.CrossRefGoogle Scholar
Dalrymple, RW, Choi, K. 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81(3–4):135174.CrossRefGoogle Scholar
Delibrias, G, Laborel, J. 1969. Recent variations of the sea-level along the Brazilian coast. Quaternaria 14:4549.Google Scholar
Dias, GTM, Kjerfve, B. 2009. Barrier and Beach Systems of Rio de Janeiro Coast. In: Dillenburg, SR, Hesp, PA, editors. Geology and geomorphology of Holocene coastal barriers of Brazil. Heidelberg/Berlin: Springer. p. 225252.CrossRefGoogle Scholar
Dias, GTM, Dias, MS, Ternes, CF. 2019. Plataforma Continental do Rio de Janeiro. In: Dias, MS, Bastos, AC, Vital, H, orgs. Plataforma Continental Brasileira. Série I: Estados do Rio de Janeiro, Santa Catarina e Rio Grande do Sul. 1ª Edição, Rio de Janeiro, P2GM Projetos e Produções. p. 755.Google Scholar
Field, ME, Duane, DB. 1976. Post-Pleistocene history of the United States inner continental shelf: Significance to origin of barrier islands. Geological Society of America Bulletin 87(5):691702.2.0.CO;2>CrossRefGoogle Scholar
Folk, RL, Ward, WC. 1957. Brazos River Bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27:326.CrossRefGoogle Scholar
Fortes, LP, Costa, SMA, Abreu, MA, Silva, AL, Júnior, NJM, Monico, JG, Santos, MC, Tétreault, P. 2009 Latest Enhancements in the Brazilian Active Control Network. In: Sideris, MG, editor. Observing our changing Earth. International Association of Geodesy Symposia. Vol. 133. Heidelberg/Berlin: Springer. p. 6570.CrossRefGoogle Scholar
Gilbert, GK. 1885. The topographic features of lake shores. U.S. Geological Survey Report 5:69123.Google Scholar
Gross, MG. 1971. Carbon determination. In: Carver, RE, editor. Procedures in sedimentary. New York: Wiley-Interscience. p. 573596.Google Scholar
Hoyt, JH. 1967. Barrier islands formation. Geological Society of America Bulletin 78:11251135.CrossRefGoogle Scholar
IBGE. 2010. Instruções técnicas para Controle Geodésico de Estações Maregráficas – CGEM e sua vinculação vertical ao Sistema Geodésico Brasileiro – SGB. Manuais técnicos em geociências 11. Ministério do Planejamento, Orçamento e Gestão. Instituto Brasileiro de Geografia e Estatística – IBGE. Diretoria de Geociências. Coordenação de Geodésia. 38 p.Google Scholar
Ireland, S. 1987. The Holocene sedimentary history of the coastal lagoons of Rio de Janeiro state, Brazil. In: Tooley MJ, Shennan I, editors. Sea-level changes. Oxford: Basil Blackwell. The Institute of British Geographers. Special Publications Series 20. p. 25–66.Google Scholar
Jesus, PB, Dias, FF, Muniz, RA, Macario, KCD, Seoane, CS, Quattrociocchi, DGS, Cassab, RCT, Aguilera, O, Souza, RCCL, Alves, EQ, et al. 2017. Holocene paleo-sea-level in southeastern Brazil: an approach based on vermetids shells. Journal of Sedimentary Environments 2(1):3548.CrossRefGoogle Scholar
Khan, NS, Ashe, E, Shaw, TA, Vacchi, M, Walker, J, Peltier, WR, Kopp, RE, Horton, BP. 2015. Holocene Relative Sea-Level Changes from Near-, Intermediate-, and FarField Locations. Curr. Clim. Chang. Reports 1:247262. doi: 10.1007/s40641-015-0029z.CrossRefGoogle Scholar
Krumbein, WC. 1941. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Petrology 11:6472.CrossRefGoogle Scholar
Laborel, J. 1969. Les pouplements de madréporaires des côtes tropicales du Brésil. Annales de l’Universtité D’Abidjan. Serie E-II Fascicule 3. Ecologie. 261 p.Google Scholar
Lamego, AR. 1945. Ciclo evolutivo das lagunas fluminenses. Rio de Janeiro: Departamento Nacional da Produção Mineral/Divisão de Geologia e Mineralogia. Bol 118. 48 p.Google Scholar
Macario, KD, Gomes, PRS, Anjos, RM, Carvalho, C, Linares, R, Alves, EQ, Oliveira, FM, Castro, MD, Chanca, IS, Silveira, MFM, et al. 2013. The Brazilian AMS radiocarbon laboratory (LAC-UFF) and the intercomparison of results with CENA and UGAMS. Radiocarbon 55(2):325330.CrossRefGoogle Scholar
Macario, KD, Oliveira, FM, Moreira, VN, Alves, EQ, Carvalho, C, Jou, RM, Oliveira, MI, Pereira, BB, Hammerschlag, I, Netto, B, et al. 2017. Optimization of the amount of zinc in the graphitization reaction for radiocarbon AMS measurements at LAC-UFF. Radiocarbon 59(3):885891. doi: 10.1017/RDC.2016.42.CrossRefGoogle Scholar
Macario, KD, Souza, RCCL, Trindade, DC, Decco, J, Lima, TA, Aguilera, OA, Alves, EQ, Oliveira, FM, Chanca, IS, Carvalho, C, Anjos, RM, Pamplona, FC, Silva, EP. 2014. Chronological model of a Brazilian Holocene shellmound (Sambaqui da Tarioba, Rio de Janeiro, Brazil). Radiocarbon 56(2):489499.CrossRefGoogle Scholar
Maia, MCAC, Martin, L, Flexor, JM, Azevedo, AEG. 1984. Evolução Holocênica da Planície Costeira de Jacarepaguá (RJ). Rio de Janeiro: Anais do XXXIII Congresso Brasileiro de Geologia. p. 105–118.Google Scholar
Mansur, KL, Ramos, RRC, Godoy, JMO, Nascimento, VMR. 2011. Beachrock de Jaconé, Maricá e Saquarema - RJ: importância para a história da ciência e para o conhecimento geológico. Revista Brasileira de Geociencias 41(2):290333.CrossRefGoogle Scholar
Martin, L, Bittencourt, ACSP, Vilas-Boas, GS. 1982. Primeira ocorrência de corais pleistocênicos da costa brasileira - datação do máximo da penúltima transgressão. Ciências da Terra, SBG 3:1617.Google Scholar
Martin, L, Suguio, K. 1978. Excursion route along the coastline between the town of Cananéia (state of São Paulo) and Guaratiba outlet (state of Rio de Janeiro). In: International Symposium on Coastal Evolution. Special Publication 2:1–98.Google Scholar
Martin, L, Suguio, K. 1989. Excursion route along the Brazilian coast between Santos (SP) and Campos (RJ) (North of State of Rio de Janeiro). In: International Symposium on Global Changes in South America during the Quaternary. Special Publication 2:1–136.Google Scholar
Martin, L, Suguio, K, Dominguez, JML, Flexor, JM. 1997. Geologia do Quaternário costeiro do litoral norte do Rio de Janeiro e do Espírito Santo. Belo Horizonte: CPRM. 112 p. 2 maps.Google Scholar
Martin, L, Suguio, K, Flexor, JM. 1979. Le Quaternaire marin du littoral brésilien entre Cananéia (SP) et Barra de Guaratiba (RJ). In: Suguio K, Fairchild TR, Martin L, Flexor JM, editors. Proceedings of the “1978 International Symposium on Coastal Evolution in the Quaternary”. São Paulo (SP), Brazil. p. 296–331.Google Scholar
Martin, L, Suguio, K, Flexor, JM, Bittencourt, ACSP, Vilas-Boas, GS. 1979/1980. Le quaternaire marin brésilien (littoral pauliste, sud fluminense et bahianais). Cahiers ORSTOM. Série Géologie 11:95–124.Google Scholar
Milne, GA, Long, AJ, Basset, SE. 2005. Modeling Holocene relative sea-level observations from the Caribbean and South America. Quaternary Science Reviews 24:11831202.CrossRefGoogle Scholar
Muehe, D, Corrêa, CHT. 1989. Dinâmica de praia e transporte de sedimentos na restinga de Maçambaba RJ. Revista Brasileira de Geociências 19(3):387–392.CrossRefGoogle Scholar
Muehe, D, Lins-de-Barros, FM. 2016. The Beaches of Rio de Janeiro. In: Short, AD, Klein, AHF, editors. Brazilian Beach Systems. Springer. Coastal Research Library 17. p. 363396. doi: 10.1007/978-3-319-30394-9_14.CrossRefGoogle Scholar
Murray-Wallace, CV, Woodroffe, CD. 2014. Quaternary sea-level changes: a global perspective. 1st ed. Cambridge: Cambridge University Press. 484 p. doi: 10.1017/CBO9781139024440.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, et al. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal AP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Reis, AT, Maia, RMC, Silva, CG, Rabineau, M, Guerra, JV, Gorini, C, Ayres, A, Arantes-Oliveira, R, Benabdellouahed, M, Simões, I, Tardin, R. 2013. Origin of step-like and lobate seafloor features along the continental shelf off Rio de Janeiro State, Santos basin-Brazil. Geomorphology 203:2545.CrossRefGoogle Scholar
Roncarati, H, Neves, LE. 1976. Projeto Jacarepaguá. Estudo geológico preliminar dos sedimentos recentes superficiais da Baixada de Jacarepaguá, Município do Rio de Janeiro - RJ. PETROBRÁS. CENPES. DEXPRO. 89 p.Google Scholar
Roy, PS, Thom, BG. 1981. Late Quaternary marine deposition in New South Wales and southern Queensland—an evolutionary model. Journal of the Geological Society of Australia 28:417489.CrossRefGoogle Scholar
Schumacher, BA. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments. Las Vegas: U.S. Environmental Protection Agency/Ecological Risk Assessment Support Center Office of Research and Development. 25 p.Google Scholar
Schwartz, ML. 1971. The multiple causality of Barrier Islands. The Journal of Geology 79(1):9194.CrossRefGoogle Scholar
Silva, ALC, Silva, MAM, Souza, RS, Pinto, MLV. 2014. The role of beachrocks on the evolution of the Holocene barrier systems in Rio de Janeiro, southeastern Brazil. In: Green AN, Cooper JAG, editors. Proceedings 13th International Coastal Symposium (Durban, South Africa). Journal of Coastal Research, special issue 70:170–175. ISSN 0749-0208.CrossRefGoogle Scholar
Sloss, CR, Jones, BG, Murray-Wallace, CV. 2005. Holocene sea-level change and the evolution of a barrier estuary: a case study, Lake Illawarra, NSW, Australia. Journal of Coastal Research 21:943959.CrossRefGoogle Scholar
Sloss, CR, Nothdurft, L, Hue, Q, O’Connor, SG, Moss, PT, Rosendahl, D, Petherick, LM, Nanson, RA, McKenzie, LL, Sternes, A, Jacobsen, GE, Ulm, S. 2018. Sea-level change and coastal landscape evolution in the southern Gulf of Carpentaria, Australia. The Holocene 28(9):14111430.CrossRefGoogle Scholar
Turcq, B, Martin, L, Flexor, J-M, Suguio, K, Tasayaco-Ortega, L. 1999. Origin and evolution of the quaternary coastal plain between Guaratiba and Cabo Frio, State of Rio de Janeiro, Brasil. In: Knoppers B, Bidone ED, Abrão JJ, editors. Environmental Geochemistry of Coastal Lagoon systems of Rio de Janeiro, Brazil. Série Geoquímica Ambiental 6:25–46.Google Scholar
Valeriano, MM. 2008. Topodata: guia para utilização de dados geomorfológicos locais. Relatório INPE-15318-RPQ/818. São José dos Campos: Instituto Nacional de Pesquisas Espaciais. 75 p.Google Scholar
WoRMS Editorial Board. 2018. World Register of Marine Species. Available at http://www.marinespecies.org. Accessed on 09-17-2018. doi:10.14284/170.CrossRefGoogle Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1):320329.CrossRefGoogle Scholar
Zalán, PV, Oliveira, JAB. 2005. Origem e evolução estrutural do Sistema de Riftes Cenozóicos do Sudeste do Brasil. Boletim de Geociências da Petrobras 13(2):269300.Google Scholar