Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T14:59:27.706Z Has data issue: false hasContentIssue false

A HIGHLY PORTABLE AND INEXPENSIVE FIELD SAMPLING KIT FOR RADIOCARBON ANALYSIS OF CARBON DIOXIDE

Published online by Cambridge University Press:  29 June 2021

Mark H Garnett*
Affiliation:
Scottish Universities Environmental Research Centre, NEIF Radiocarbon Laboratory, East Kilbride, United Kingdom
Josephine-Anne Newton
Affiliation:
Scottish Universities Environmental Research Centre, NEIF Radiocarbon Laboratory, East Kilbride, United Kingdom
Thomas C Parker
Affiliation:
University of Stirling School of Natural Sciences, Biological and Environmental Sciences, Stirling, United Kingdom
*
*Corresponding author. Email: [email protected]

Abstract

Radiocarbon (14C) analysis of carbon dioxide (CO2) can be extremely useful in carbon cycle studies because it provides unique information that can infer the age and source of this greenhouse gas. Cartridges containing the CO2-adsorbing zeolite molecular sieve are small and highly portable, which makes them more suitable for field campaigns in remote locations compared to some other CO2 collection methods. However, sampling with molecular sieve cartridges usually requires additional equipment, such as an infrared gas analyser, which can reduce portability and pose limitations due to power demands. In addition, 14C analysis of CO2 is increasingly being used in field experiments which require high numbers of replicate CO2 collections, placing extra pressure on an expensive and cumbersome collection apparatus. We therefore designed and built a molecular sieve CO2 sampling kit that utilizes a small, low power CO2 sensor. We demonstrate the reliability of the new kit for the collection of CO2 samples for 14C analysis in a series of laboratory and field tests. This inexpensive sampling kit is small, light-weight, highly portable, and has low power demands, making it particularly useful for field campaigns in remote and inaccessible locations.

Type
Technical Note
Copyright
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billett, MF, Garnett, MH, Harvey, F. 2007. UK peatland streams release old carbon dioxide to the atmosphere and young dissolved organic carbon to rivers. Geophysical Research Letters 34: L23401. doi: 10.1029/2007GL031797.CrossRefGoogle Scholar
Boaretto, E, Bryant, C, Carmi, I, Cook, G, Gulliksen, S, Harkness, D, Heinemeier, J, McClure, J, McGee, E, Naysmith, P, Possnert, G, Scott, M, van der Plicht, H, van Strydonck, M. 2002. Summary findings of the fourth international radiocarbon intercomparison (FIRI) (1998–2001). Journal of Quaternary Science 17(7):633637. doi: 10.1002/jqs.702.CrossRefGoogle Scholar
Bol, RA, Harkness, DD. 1995. The use of zeolite molecular sieves for trapping low concentrations of CO2 from environmental atmospheres. Radiocarbon 37(2): 643647. doi: 10.1017/S0033822200031155.CrossRefGoogle Scholar
Breck, D. 1974. Zeolite molecular sieves: structure, chemistry and use. New York: John Wiley & Sons.Google Scholar
Campeau, A, Bishop, K, Amvrosiadi, N, Billett, MF, Garnett, MH, Laudon, H, Öquist, MG, Wallin, MB. 2019. Current forest carbon fixation fuels stream CO2 emissions. Nature Communications 10(1):1876. doi: 10.1038/s41467-019-09922-3.CrossRefGoogle ScholarPubMed
Dean, JF, Meisel, OH, Martyn Rosco, M, Marchesini, LB, Garnett, MH, Lenderink, H, van Logtestijn, R, Borges, AV, Bouillon, S, Lambert, T, Röckmann, T, Maximov, T, Petrov, R, Karsanaev, S, Aerts, R, van Huissteden, J, Vonk, JE, Dolman, AJ. 2020. East Siberian Arctic inland waters emit mostly contemporary carbon. Nature Communications 11(1):1627. doi: 10.1038/s41467-020-15511-6.CrossRefGoogle ScholarPubMed
Garnett, MH, Murray, C. 2013. Processing of CO2 samples collected using zeolite molecular sieve for 14C analysis at the NERC Radiocarbon Facility (East Kilbride, UK). Radiocarbon 55(2–3):410415. doi: 10.1017/S0033822200057532.CrossRefGoogle Scholar
Garnett, MH, Newton, J-A, Ascough, PL. 2019. Advances in the radiocarbon analysis of carbon dioxide at the NERC Radiocarbon Facility (East Kilbride) using molecular sieve cartridges. Radiocarbon 61(6): 18551865. doi: 10.1017/RDC.2019.86.CrossRefGoogle Scholar
Gaudinski, JB, Trumbore, SE, Davidson, EA, Zheng, S. 2000. Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:3369. doi: 10.1023/A:1006301010014 CrossRefGoogle Scholar
Gavazov, K, Albrecht, R, Buttler, A, Dorrepaal, E, Garnett, MH, Gogo, S, Hagedorn, F, Mills, RTE, Robroek, BJM, Bragazza, L. 2018. Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change. Global Change Biology 24(9):39113921. doi: 10.1111/gcb.14140.CrossRefGoogle ScholarPubMed
Gulliksen, S, Scott, M. 1995. Report of the TIRI workshop, Saturday 13 August, 1994. Radiocarbon 37(2):820821. doi: 10.1017/S0033822200031404.CrossRefGoogle Scholar
Hämäläinen, K, Fritze, H, Jungner, H, Karhu, K, Oinonen, M, Sonninen, E, Spetz, P, Tuomi, M, Vanhala, P, Liski, J. 2010. Molecular sieve sampling of CO2 from decomposition of soil organic matter for AMS radiocarbon measurements. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268(7):10671069. doi: 10.1016/j.nimb.2009.10.099.CrossRefGoogle Scholar
Hardie, SML, Garnett, MH, Fallick, AE, Rowland, AP, Ostle, NJ. 2005. Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic studies (13C and 14C) of respiration. Radiocarbon 47(3):441451. doi: 10.1017/S0033822200035220.CrossRefGoogle Scholar
Hartley, IP, Garnett, MH, Sommerkorn, M, Hopkins, DW, Fletcher, BJ, Sloan, VL, Phoenix, GK, Wookey, PA. 2012. A potential loss of carbon associated with greater plant growth in the European Arctic. Nature Climate Change 2: 875879. doi: 10.1038/NCLIMATE1575.CrossRefGoogle Scholar
Kwon, MJ, Natali, SM, Hicks Pries, CE, Schuur, EAG, Steinhof, A, Crummer, KG, Zimov, N, Zimov, SA, Heimann, M, Kolle, O, Göckede, M. 2019. Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems. Global Change Biology 25(4):13151325. doi: 10.1111/gcb.14578.CrossRefGoogle Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980. doi: 10.1017/S0033822200053066.CrossRefGoogle Scholar
Major, I, Haszpra, L, Rinyu, L, Futó, I, Bihari, Á, Hammer, S, Jull, AJT, Molnár, M. 2018. Temporal variation of atmospheric fossil and modern CO2 excess at a central European rural tower station between 2008 and 2014. Radiocarbon 60(5):12851299. doi: 10.1017/RDC.2018.79.CrossRefGoogle Scholar
Metcalfe, DB, Hermans, TDG, Ahlstrand, J, Becker, M, Berggren, M, Björk, RG, Björkman, MP, Blok, D, Chaudhary, N, Chisholm, C, Classen, AT, Hasselquist, NJ, Jonsson, M, Kristensen, JA, Kumordzi, BB, Lee, H, Mayor, JR, Prevéy, J, Pantazatou, K, Rousk, J, Sponseller, RA, Sundqvist, MK, Tang, J, Uddling, J, Wallin, G, Zhang, W, Ahlström, A, Tenenbaum, DE, Abdi, AM. 2018. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nature Ecology & Evolution 2(9):14431448. doi: 10.1038/s41559-018-0612-5.CrossRefGoogle ScholarPubMed
Molnár, M, Haszpra, L, Svingor, É, Major, I, Svetlik, I. 2010. Atmospheric fossil fuel CO2 measurement using a field unit in a central European city during the winter of 2008/09. Radiocarbon 52(2):835845. doi: 10.1017/S0033822200045859.CrossRefGoogle Scholar
Palonen, V. 2015. A portable molecular-sieve-based CO2 sampling system for radiocarbon measurements. Review of Scientific Instruments 86:125101. doi: 10.1063/1.4936291.CrossRefGoogle ScholarPubMed
Slota, P, Jull, AJT, Linick, T, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2): 303306. doi: 10.1017/S0033822200056988.CrossRefGoogle Scholar
Street, LE, Garnett, MH, Subke, J-A, Baxter, R, Dean, JF, Wookey, PA. 2020. Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Global Change Biology 26(8):45594571. doi: 10.1111/gcb.15134.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Reporting of 14C data. Radiocarbon 19(3):355363. doi: 10.1017/S0033822200003672.CrossRefGoogle Scholar
Wotte, A, Wischhöfer, P, Wacker, L, Rethemeyer, J. 2017a. 14CO2 analysis of soil gas: evaluation of sample size limits and sampling devices. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 413: 5156. doi.org/10.1016/j.nimb.2017.10.009.CrossRefGoogle Scholar
Wotte, A, Wordell-Dietrich, P, Wacker, L, Don, A, Rethemeyer, J. 2017b. 14CO2 processing using an improved and robust molecular sieve cartridge. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 400:6573. doi: 10.1016/j.nimb.2017.04.019.CrossRefGoogle Scholar
Zhou, W, Niu, Z, Wu, S, Xiong, X, Hou, Y, Wang, P, Feng, T, Cheng, P, Du, H, Lu, X, An, Z, Burr, GS, Zhu, Y. 2020. Fossil fuel CO2 traced by radiocarbon in fifteen Chinese cities. Science of The Total Environment 729:138639. doi: 10.1016/j.scitotenv.2020.138639.CrossRefGoogle ScholarPubMed
Supplementary material: File

Garnett et al. supplementary material

Garnett et al. supplementary material

Download Garnett et al. supplementary material(File)
File 211.8 KB