Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:49:24.158Z Has data issue: false hasContentIssue false

Dating Bulk Sediments from Limnic Deposits Using a Grain-Size Approach

Published online by Cambridge University Press:  09 February 2016

Leo Rothacker
Affiliation:
Institute of Geosciences, Johannes Gutenberg University, J-J Becher Weg 21, 55128 Mainz, Germany Leibniz Laboratory for Radiometric Dating and Isotope Research, Christian Albrechts University, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Alexander Dreves
Affiliation:
Leibniz Laboratory for Radiometric Dating and Isotope Research, Christian Albrechts University, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Frank Sirocko*
Affiliation:
Institute of Geosciences, Johannes Gutenberg University, J-J Becher Weg 21, 55128 Mainz, Germany
Pieter M Grootes
Affiliation:
Leibniz Laboratory for Radiometric Dating and Isotope Research, Christian Albrechts University, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
Marie-Josée Nadeau
Affiliation:
Leibniz Laboratory for Radiometric Dating and Isotope Research, Christian Albrechts University, Max-Eyth-Str. 11-13, 24118 Kiel, Germany
*
3Corresponding author. Email: [email protected].

Abstract

Radiocarbon measurements on bulk subaqueous sediments typically provide ages significantly older than actual time of deposition. This is generally caused by the presence of reworked organic compounds, which are depleted in 14C. To explore this issue of age heterogeneity, we collected 4 organic-rich samples from varying depths in a lake sediment core at the Gemündener Maar (Eifel, Germany), a lake of volcanic origin. We divided each sample into 5 standard grain-size fractions: gravel, sand, silt, clay, and 1 fraction smaller than 0.45 μm. These were cleaned separately using a standard acid-alkali-acid treatment. The highly organic gravel-size fraction provided the youngest 14C ages of all grain-size fractions and seems to be associated most closely with the time of deposition. By contrast, the silt and clay fractions show significantly older ages. If the investigated limnic sediment layer does not contain any identifiable terrestrial macrofossils, extracting and measuring coarser grain-size fractions instead of measuring bulk sediment samples will provide a better approximation of the time of sedimentation.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, MB, Stafford, TW Jr. 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45(3):300–11.CrossRefGoogle Scholar
Amelung, W, Zech, W, Zhang, X, Follett, RF, Tiessen, H, Knox, E, Flach, KW. 1998. Carbon, nitrogen, and sulfur pools in particle-size fractions as influenced by climate. Soil Science Society of America Journal 62(1):172–81.Google Scholar
Bruns, M, Levin, I, Münnich, KO, Hubberten, HW, Fillipakis, S. 1980. Regional sources of volcanic carbon-dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22(2):532–6.CrossRefGoogle Scholar
Dreves, A. 2008. C-Dynamik in Böden unter forst- und landwirtschaftlicher Nutzung – Untersuchungen mittels Radiokohlenstoff (14C-AMS) , Christian-Albrechts-University Kiel. 203 p.Google Scholar
Godwin, H. 1951. Comments on radiocarbon dating for samples from the British Isles. American Journal of Science 249(4):301–7.Google Scholar
Grootes, PM, Nadeau, MJ, Rieck, A. 2004. 14C-AMS at the Leibniz-Labor: radiometric dating and isotope research. Nuclear Instruments and Methods in Physics Research B 223–224:5561.CrossRefGoogle Scholar
Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil 191(1):7787.Google Scholar
Hiller, A, Tinapp, C, Grootes, PM, Nadeau, M-J. 2003. Ungewöhnliche Probleme bei der 14C-Datierung organischer Komponenten und Fraktionen fluviatiler Sedimente aus der Aue der Weißen Elster bei Leipzig. Eiszeitalter und Gegenwart 52:412.Google Scholar
Jolivet, C, Angers, DA, Chantigny, MH, Andreux, F, Arrouays, D. 2006. Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biology and Biochemistry 38(9):2834–42.Google Scholar
Litt, T, Stebich, M. 1999. Bio- and chronostratigraphy of the Lateglacial in the Eifel region, Germany. Quaternary International 61(1):516.Google Scholar
MacDonald, GM, Beukens, RP, Kieser, WE. 1991. Radiocarbon dating of limnic sediments: a comparative analysis and discussion. Ecology 72(3):1150–5.CrossRefGoogle Scholar
McGeehin, J, Burr, GS, Jull, AJT, Reines, D, Gosse, J, Davis, PT, Muhs, D, Southon, JR. 2001. Stepped-combustion 14C dating of sediment: a comparison with established techniques. Radiocarbon 43(2A):255–61.Google Scholar
Nadeau, M-J, Schleicher, M, Grootes, PM, Erlenkeuser, H, Gottdang, A, Mous, DJW, Samthein, JM, Willkomm, H. 1997. The Leibniz-Labor facility at the Christian-Albrechts University, Kiel, Germany. Nuclear Instruments and Methods in Physics Research B 123(1–4):2230.Google Scholar
Nadeau, M-J, Grootes, PM, Schleicher, M, Hasselberg, P, Rieck, A, Bitterling, M. 1998. Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40(1):239–45.Google Scholar
Quénéa, K, Largeau, C, Derenne, S, Spaccini, R, Bardoux, G, Mariotti, A. 2006. Molecular and isotopic study of lipids in particle size fractions of sandy cultivated soil (Cestas cultivation sequence, southwest France): sources, degradation, and comparison with Cestas forest soil. Organic Geochemistry 37(1):2044.Google Scholar
Rethemeyer, J. 2004. Organic carbon transformation in agricultural soils: radiocarbon analysis of organic matter fractions and biomarker compounds , Christian-Albrechts-University Kiel. 148 p.Google Scholar
Rethemeyer, J, Grootes, PM, Bruhn, F, Andersen, N, Nadeau, M-J, Kramer, C, Gleixner, G. 2004. Age heterogeneity of soil organic matter. Nuclear Instruments and Methods in Physics Research B 223–224:521–7.Google Scholar
Rothacker, L, Sirocko, F. Forthcoming. Evaluation of flood events in three Eifel Maar sediment records during the 16th century BC. In: 1600 – Kultureller Umbruch im Schatten des Thera-Ausbruchs? 4. Mitteldeutscher Archäologentag vom 14. Bis 16. Oktober 2011 in Halle (Saale). Tagungen des Landesmuseums för Vorgeschichte Halle 9. Volume 8.Google Scholar
Scharpenseel, HW, Becker-Heidmann, P. 1992. Twenty-five years of radiocarbon dating soils: paradigm of erring and learning. Radiocarbon 34(3):541–9.Google Scholar
Schöning, I, Kögel-Knabner, I. 2006. Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biology and Biochemistry 38(8):2411–24.Google Scholar
Sirocko, F. 2009. Wetter, Klima, Menschheitsentwicklung. Von der Eiszeit bis ins 21. Jahrhundert. Darmstadt: Theiss.Google Scholar
Sirocko, F, Dietrich, D, Veres, D, Grootes, PM, Schaber-Mohr, K, Seelos, K, Nadeau, MJ, Kromer, B, Rothacker, L, Röhner, M, Krbetschek, M, Appleby, P, Hambach, U, Rolf, C, Sudo, M, Grim, S. 2013. Multi-proxy-dating of Holocene maar lakes and Pleistocene dry maar sediments in the Eifel, Germany. Quaternary Science 62:5676.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(2):355–63.Google Scholar
Törnqvist, TE, De Jong, AFM, Oosterbaan, WA, Van der Borg, K. 1992. Accurate dating of organic deposits by AMS 14C measurements of macrofossils. Radiocarbon 34(3):566–77.Google Scholar