Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T09:45:34.992Z Has data issue: false hasContentIssue false

The Cave of Pan, Marathon, Greece—AMS Dating of the Neolithic Phase and Calculation of the Regional Marine Reservoir Effect

Published online by Cambridge University Press:  24 August 2017

Yorgos Facorellis*
Affiliation:
Department of Antiquities and Works of Art Conservation, Faculty of Fine Arts and Design, Technological Educational Institute of Athens, Aghiou Spyridonos, 12243 Egaleo, Athens, Greece
Alexandra Mari
Affiliation:
Ephorate of Paleoanthropology-Speleology, Ardittou 34B, 11636 Athens, Greece
Christine Oberlin
Affiliation:
Laboratoire ArAr. Archéologie et Archéométrie, MSH Maison de l’Orient et de la Méditerranée, 7 rue Raulin - 69365 LYON cedex 7, France
*
*Corresponding author. Email: [email protected].

Abstract

The Cave of Pan is located on the N/NE slope of the hill of Oinoe (38°09′31.60′′N, 23°55′48.60′′E), west of modern Marathon. In rescue excavation campaigns during the last three years, among other finds, charcoal and seashell samples were also collected. The purpose of this study is the accelerator mass spectrometry (AMS) dating of the cave’s anthropogenic deposits and the calculation of the regional marine reservoir effect during the Neolithic period. For that purpose, 7 charcoal pieces and 1 seashell were dated. Our results show that the cave was used from the second quarter of the 6th millennium (Middle Neolithic period) until the beginning of the 5th millennium BC. Additionally, one sample collected from a depth of 2 cm from the present surface of the cave yielded an age falling within the 6th century AD, giving thus the absolute time span of the cave use. Moreover, the radiocarbon (14C) ages of one pair of charcoal-seashell samples showed that the marine reservoir age R(t) in the estuarine Marathon Bay region during the 5th millennium BC is 775±57 yr and the local sea surface reservoir deviation ΔR is found to be 402±63 14C yr (within 1σ).

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

References

REFERENCES

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods B 123:221225.CrossRefGoogle Scholar
Arapogianni, X. 2000. Ta spilaia tou Panos stin Attiki. PhD Dissertation, University of Thessaloniki. National Archive of PhD Theses (EADD). Available at: www.didaktorika.gr/eadd/handle/10442/13606.Google Scholar
Baeteman, C. 1985. Late Holocene geology of the Marathon Plain (Greece). Journal of Coastal Research 1:173185.Google Scholar
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.Google Scholar
Bronk Ramsey, C. 2013. OxCal, v.4.2.4, r.5, online access. Available at: https://c14.arch.ox.ac.uk/ oxcal/OxCal.html.Google Scholar
Bronk Ramsey, C, Dee, M, Lee, S, Nakagawa, T, Staff, R. 2010. Developments in the calibration and modelling of radiocarbon dates. Radiocarbon 52(3):953961.Google Scholar
Casford, JSL, Rohling, EJ, Abu-Zied, R, Cooke, S, Fontainer, C, Leng, M, Lykousis, V. 2002. Circulation changes and nutrient concentrations in the late Quaternary Aegean Sea: a nonsteady state concept for sapropel formation. Paleoceanography 17(2):10241034.Google Scholar
Chandler, R. 1825. Travels in Asia Minor and Greece. Vol. II, new edition. Oxford.Google Scholar
Curtius, E, Kaupert, J, Jessen, A. 1881–1903. Karten von Attika, auf Veranlassung des kaiserlich Deutschen archäologischen Instituts und mit Unterstützung des K. Preuss. Ministeriums der geistlichen Unterrichts und Medicinal- Angelegeheiten aufgenommen durch Offiziere und Beambte des K. Preuss. Grossen Generalstabes. Mit erlauterndem Text und Gesammtregister von J. Jessen. Berlin.Google Scholar
Daux, G. 1959. Chronique de fouilles en 1958, Marathon, grotte de Pan. Bulletin de Correspondance Hellenique 1959:587590.Google Scholar
Dodwell, E. 1819. A Classical and Topographical Tour through Greece during the years 1801, 1805 and 1806. Two volumes. London.Google Scholar
Facorellis, Y, Maniatis, Y, Kromer, B. 1998. Apparent 14C ages of marine mollusks shells from a Greek island—Calculation of the marine reservoir effect in the Aegean Sea. Radiocarbon 40(3):963974.Google Scholar
Facorellis, Y, Vardala-Theodorou, E. 2015. Sea surface radiocarbon reservoir age changes in the Aegean Sea from about 11,200 BP to present. Radiocarbon 57(3):491503.Google Scholar
Goslar, T, Pazdur, MF. 1985. Contamination studies on mollusk shell samples. Radiocarbon 27(1):3342.Google Scholar
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989. The Oxford Accelerator Mass Spectrometry Facility: technical developments in routine dating. Archaeometry 31(2):99113.Google Scholar
Herodotus. Istoriai. VI: Erato.Google Scholar
Hobhouse, JC. 1817. A Journey through Albania and other provinces of Turkey in Europe and Asia to Constantinople during the years 1809 and 1810. Two volumes. Philadelphia.Google Scholar
Kakavogianni, O, Tselepi, E, Dimitriou, K, Katsavou, C, Douni, K. 2016. The Neolithic and Early Bronze Age settlement in Merenta, Attica, in its regional context. In: Tsirtsoni Z, editor. The Human Face of Radiocarbon. Reassessing chronology in prehistoric Greece and Bulgaria, 5000-3000 cal BC. Travaux de la Maison de l’ Orient et de la Mediterranee No 69:437–51.Google Scholar
Leake, W. 1841. The topography of Athens and the Demi. Vol. I: the topography of Athens. Vol. II: The Demi of Attica. 2nd edition. London.Google Scholar
Mee, C, Cavanagh, B, Renard, J. 2014. The Middle-Late Neolithic transition at Kouphovouno. The Annual of the British at Athens 2014:131.Google Scholar
Mercone, D, Thomson, J, Croudace, IW, Siani, G, Paterne, M, Troelstra, S. 2000. Duration of S1, the most recent sapropel in the eastern Mediterranean Sea, as indicated by accelerator mass spectrometry radiocarbon and geochemical evidence. Paleoceanography 15(3):336347.CrossRefGoogle Scholar
Orlandos, AK, editor. 1959. Marathon. Spilaion Panos. Ergon 1958:1522.Google Scholar
Pantelidou-Gofa, M. 1991. I Neolithiki Nea Makri. Ta oikodomika. Vivliothiki tis En Athinais Archaiologikis Etaireias, ar 119. Athinai.Google Scholar
Papadimitriou, N, Tsirtsoni, Z. 2010. I Ellada sto euritero politismiko plaisio ton Valkanion kata tin 5i kai 4i hilietia p.X. Mouseio Kykladikis Tehnis Idryma NP Goulandri. Athina.Google Scholar
Pausanias. Ellados periigisis. Attika.Google Scholar
Pavlopoulos, K, Karkanas, P, Triantaphyllou, M, Karymbalis, E. 2003. Climate and sea-level changes recorded during late Holocene in the coastal plain of Marathon, Greece. In: Fouache E, editor. The Mediterranean World Environment and History, IAG Working Group on Geo-archaeology, Symposium Proceedings, Paris, Université de Paris-Sorbonne, 24–26 April 2002:453–65.Google Scholar
Pavlopoulos, K, Karkanas, P, Triantaphyllou, M, Karymbalis, E, Tsourou, Th, Palyvos, N. 2006. Palaeoenvironmental evolution of the coastal plain of Marathon, Greece, during the late Holocene: depositional environment, climate and sea-level changes. Journal of Coastal Research 22:424438.Google Scholar
Petrakos, VCh. 1993. I alepou itan archaiokapilos (To spilaio tou Panos ston Marathona). O Mentor 25:6770.Google Scholar
Petrakos, VCh. 1995. Marathon (Vivliothiki tis En Athinais Archaiologikis Etaireias, ar. 146). Athens.Google Scholar
Petrocheilos, I. 1959. Spilaion Oinoes B’, ar. ESE 903. Deltion tis Ellinikis Spilaiologikis Etaireias 4(7):99105.Google Scholar
Phelps, WW. 2004. The Neolithic Pottery Sequence in Southern Greece. BAR-IS 1259. Oxford.Google Scholar
Reimer, PJ, McCormac, FG. 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44(1):159166.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.Google Scholar
Sampson, A. 1993. Skoteini Tharrounion. To spilaio, o oikismos kai to nekrotafeio. Athens.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Métivier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271280.Google Scholar
Southon, JR, Rodman, AO, True, D. 1995. A comparison of marine and terrestrial radiocarbon ages from northern Chile. Radiocarbon 37(2):389393.Google Scholar
Steinhauer, G. 2009. Marathon and the Archaeological Museum. Athens: John S. Latsis Public Benefit Foundation.Google Scholar
Triantaphyllou, M, Pavlopoulos, K, Tsourou, Th, Dermitzakis, MD. 2003. Brackish marsh Benthic microfauna and palaeoenvironmental changes during the last 6000 years on the coastal plain of Marathon (SE Greece). Rivista Italiana di Paleontologia e Stratigrafia 109(3):539547.Google Scholar
Valavanis, P. 2001. Greece Marathon Museum. Union Academique Internationale, Corpus Vasorum Antiquorum, Greece, fasc.7. Athens: Academy of Athens.Google Scholar
van der Plicht, J, Wijma, S, Aerts, AT, Pertuisot, MH, Meijer, HAJ. 2000. Status report: the Groningen AMS facility. Nuclear Instruments and Methods in Physics Research B 172:5865.Google Scholar
Vitelli, KD. 1993. Franchthi Neolithic Pottery, Vol. 1: Classification and Ceramic Phases 1 and 2. Jacobsen TW (general ed) Excavations at Franchthi Cave, Greece, fascicle 8. Bloomington & Indianapolis: Indiana University Press.Google Scholar
Wickens, JM. 1986. The archaeology and history of cave use in Attica, Greece from Neolithic through Late Roman times, vols I and II [PhD dissertation]. Indiana University, Bloomington, University Microfilms Ann Arbor.Google Scholar
Wijma, S, van der Plicht, J. 1997. The Groningen AMS tandetron. Nuclear Instruments and Methods in Physics Research B 123:8792.Google Scholar
Supplementary material: File

Facorellis et al supplementary material

Facorellis et al supplementary material 1

Download Facorellis et al supplementary material(File)
File 1.3 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 2

Download Facorellis et al supplementary material(Image)
Image 2.3 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 3

Download Facorellis et al supplementary material(Image)
Image 906.8 KB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 4

Download Facorellis et al supplementary material(Image)
Image 2.3 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 5

Download Facorellis et al supplementary material(Image)
Image 1.2 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 6

Download Facorellis et al supplementary material(Image)
Image 60 KB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 7

Download Facorellis et al supplementary material(Image)
Image 316.6 KB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 8

Download Facorellis et al supplementary material(Image)
Image 2.4 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 9

Download Facorellis et al supplementary material(Image)
Image 1.2 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 10

Download Facorellis et al supplementary material(Image)
Image 994.1 KB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 11

Download Facorellis et al supplementary material(Image)
Image 2.1 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 12

Download Facorellis et al supplementary material(Image)
Image 1.4 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 13

Download Facorellis et al supplementary material(Image)
Image 78.1 KB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 14

Download Facorellis et al supplementary material(Image)
Image 2.3 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 15

Download Facorellis et al supplementary material(Image)
Image 1.4 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 16

Download Facorellis et al supplementary material(Image)
Image 2.5 MB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 17

Download Facorellis et al supplementary material(Image)
Image 77.4 KB
Supplementary material: Image

Facorellis et al supplementary material

Facorellis et al supplementary material 18

Download Facorellis et al supplementary material(Image)
Image 1.2 MB
Supplementary material: PDF

Facorellis et al supplementary material

Facorellis et al supplementary material 19

Download Facorellis et al supplementary material(PDF)
PDF 2.3 MB
Supplementary material: PDF

Facorellis et al supplementary material

Facorellis et al supplementary material 20

Download Facorellis et al supplementary material(PDF)
PDF 2.1 MB